
Carnegie Mellon

Computer Systems Organization
https://nyu-cso.github.io

Jinyang Li

https://nyu-cso.github.io/

Carnegie Mellon

Course staff

Zoom recitation instructor:
Shraddha Iyer (M.S. student)

Lecturer: Prof. Jinyang Li

In-person recitation instructor:
Shantanu Dahiya(M.S. student)

http://news.cs.nyu.edu/~jinyang

Course Goal
• Beyond learning how to program

– Learn the gritty internals of how a computer really works

How does the
ring really work?

To be covered
by OS (202)

Covered
by CSO

Goal: learn how computers really work

Components of a computer

Components of a computer: hardware

SSD

GPU

Memory

Printed
Circuits

Transistors

Components of a computer: hardware
+ software

Printed Circuit

Layered Organization

Hardware

Software

Layered Organization

Hardware

Software

Transistors Diodes Resistors

Layered Organization

Hardware

Software

Transistors Diodes Resistors

Logical Circuits,
Flip-Flops, Gates

Layered Organization

Hardware

Software

Transistors Diodes Resistors

Logical Circuits,
Flip-Flops, Gates

CPU, Memory, Disk

Layered Organization

Hardware

Software

Transistors, Diodes, Resistors, …

Logical Circuits, Flip-Flops, Gates, …

CPU Memory I/O

Layered Organization

Hardware

Software

Transistors, Diodes, Resistors, …

Logical Circuits, Flip-Flops, Gates, …

CPU Memory I/O

System Software
(OS, compiler, VM…)

Layered Organization

Hardware

Software

Transistors, Diodes, Resistors, …

Logical Circuits, Flip-Flops, Gates, …

CPU Memory I/O

System Software
(OS, compiler, VM…)

User Applications

Layered Organization

Hardware

Software

Transistors, Diodes, Resistors, …

Logical Circuits, Flip-Flops, Gates, …

CPU Memory I/O

System Software
(OS, compiler, VM…)

User Applications

Users

Layered Organization

Hardware

Software

Transistors, Diodes, Resistors, …

Logical Circuits, Flip-Flops, Gates, …

CPU Memory I/O

System Software

User Applications

Operating
System

Apps

Abstraction

Hardware

Software

Transistors, Diodes, Resistors, …

Logical Circuits, Flip-Flops, Gates, …

CPU Memory I/O

System Software

User Applications

Operating
System

Abstract
Interface

Apps

Scope of this class

Hardware

Software

Transistors, Diodes, Resistors, …

Memory I/O

System Software

User Applications

Operating
System

Abstract
Interface

CPU

Logical Circuits, Flip-Flops, Gates, …

Apps

Scope of this class

1. How do applications run on a computer?
– Hardware/software interface

2. How do CPU/memory work?
– overview of computer architecture

Schedule
https://nyu-cso.github.io
overview
bit, byte and int
float point
[C] basics, bitwise operator, control flow
[C] scopes rules, pointers, arrays
[C] structs, mallocs
[C] large program (linked list)

C Programming

Schedule
https://nyu-cso.github.io
overview
bit, byte and int
float point
[C] basics, bitwise operator, control flow
[C] scopes rules, pointers, arrays
[C] structs, mallocs
[C] large program (linked list)
Machine Prog: ISA, Compile, movq
Machine Prog: Control Code (condition, jump instruction)
Machine Prog: Array allocation and access
Machine Prog: Procedure calls
Machine Prog: Structure, Memory Layout
Machine Prog: Buffer Overflow

C Programming

Assembly (X86)

Schedule
https://nyu-cso.github.io
overview
bit, byte and int
float point
[C] basics, bitwise operator, control flow
[C] scopes rules, pointers, arrays
[C] structs, mallocs
[C] large program (linked list)
Machine Prog: ISA, Compile, movq
Machine Prog: Control Code (condition, jump instruction)
Machine Prog: Array allocation and access
Machine Prog: Procedure calls
Machine Prog: Structure, Memory Layout
Machine Prog: Buffer Overflow
Code optimizations
Dynamic Memory Allocation
Dynamic Memory Allocation continued

C Programming

Assembly (X86)

Dynamic Memory
Allocation

Schedule
https://nyu-cso.github.io
overview
bit, byte and int
float point
[C] basics, bitwise operator, control flow
[C] scopes rules, pointers, arrays
[C] structs, mallocs
[C] large program (linked list)
Machine Prog: ISA, Compile, movq
Machine Prog: Control Code (condition, jump instruction)
Machine Prog: Array allocation and access
Machine Prog: Procedure calls
Machine Prog: Structure, Memory Layout
Machine Prog: Buffer Overflow
Code optimizations
Dynamic Memory Allocation
Dynamic Memory Allocation continued
Logic Design
Logic Design continued
Sequential implementation
Pipelined implementation

C Programming

Assembly (X86)

Dynamic Memory
Allocation

Architecture

Schedule
https://nyu-cso.github.io
overview
bit, byte and int
float point
[C] basics, bitwise operator, control flow
[C] scopes rules, pointers, arrays
[C] structs, mallocs
[C] large program (linked list)
Machine Prog: ISA, Compile, movq
Machine Prog: Control Code (condition, jump instruction)
Machine Prog: Array allocation and access
Machine Prog: Procedure calls
Machine Prog: Structure, Memory Layout
Machine Prog: Buffer Overflow
Code optimizations
Virtual memory: Address Spaces/ Translation, Goal
Virtual memory: Page table/physcial to virtual
Process
Dynamic Memory Allocation I: malloc, free
Dynamic Memory Allocation II: design allocator
Dynamic Memory Allocation III: futher optimization
Memory, cache
Memory, cache

C Programming

Assembly (X86)

Memory & Cache

Dynamic Memory
Allocation

Architecture

Course logistics
• Lectures (in-person): T/Th 9:30-10:45am
• Recitation(in-person or zoom): M 8-9:15am
• Website: https://nyu-cso.github.io

– Syllabus
• Reading preparation
• lecture/recitation slides
• Lab instructions

• Forum: Campuswire
– Q&A

• NYU Brightspace
– Gradescope

• Lab submission, weekly assessments
– Zoom links, Zoom recordings
– Use Campuswire instead of Brightspace for Q&A.

https://nyu-cso.github.io/

Textbooks

The C Programming Language 2nd ed,
Kernighan and Ritchie

Computer organization and design (RISC-V
edition), Patterson and Hennessy

Computer Systems -- A programmer's perspective,
3rd ed, Bryant and O’Hallaron.

Grade Breakdown
• 5 programming labs

– Lab-1,2,3,5: 8%
– Lab-4: 10%

• Weekly assessments (take-home)
– 14 total, starting next week
– 1.5% each

• Midterm (80 minutes)
• - 14%
• Final exam (80 minutes)

– 20%
• Participation: 3%

– Includes participation in lecture, recitation, online forum (Campuswire)

5 individual programming labs
• Programming environment:
– Use Courant’s compute server (snappy1)
– Learn to use:

• a text editor to write code
• git for version control

• Optional bonus exercises.
• Submission:
– Push to github
– Submit and have it graded via Gradescope

• Late policy:
– 6 (cumulative) grace days in total over the semester.
– 3 max. grace days for each lab.

Weekly assessment (mini-quiz)
• Start next week
• Done via Gradescope:
– Multiple choice questions and short answers
– Mostly on the current week’s materials

• Open-book individual assessments
– Do not consult your classmates or anyone else.

• Quiz duration:
– 24-hours.
– Thu 9pm to Fri 9pm (EST). No late submission.

• Answers discussed in the following week’s recitation

To thrive in CSO, you should …

• Before lecture:
– Read assigned book chapters

• During lecture/recitation:
– Ask questions
– Don’t be shy to ask me to repeat.

• Labs and weekly assessment.
– Start early

• Getting help:
– Campuswire
– Office hours (see post on Campuswire)

Carnegie Mellon

Integrity and Collaboration Policy

1. The work that you turn in must be yours
2. You must acknowledge your influences

• E.g., if you are inspired by a code snippet, include the
URL to the snippet in the lab you turn in.

3. You must not look at, or use, solutions from prior
years or the Web, or seek assistance from the Internet

4. You must take reasonable steps to protect your work
– You must not publish your solutions

5. We reserve the right to randomly pick students for
oral assessment and over-weight oral assessment if it
does not match your quiz/lab performance.

Carnegie Mellon

Integrity and Collaboration Policy

We will enforce integrity policy strictly and
report violators to the department and Dean.

Do not turn in labs/quiz that are not yours
You won’t fail because of one missing lab/quiz

