Floating point

Jinyang Li

Floating Point (FP) lesson plan

- Normalized binary exponential notation
- Strawman 32-bit FP
- IEEE FP format
- Rounding

Previously...

What about real numbers?

Represent real numbers: the decimal way

Real Number

$11 / 2$	$(5.5)_{10}$
$1 / 3$	$(0.3333333 \ldots)_{10}$
V 2	$(1.4128 \ldots)_{10}$
$(1.4128 \ldots)_{10}=1 * 10^{0}+4 * 10^{-1}+1 * 10^{-2}+2 * 10^{-3}+\ldots$	

Binary Representation

$$
\begin{aligned}
(5.5)_{10}=4+1+1 / 2 & =2^{2}+2^{0}+2^{-1} \\
& =(101.1)_{2}
\end{aligned}
$$

Binary Representation

$$
\begin{gathered}
(0.1)_{10}=2^{-4}+2^{-5}+2^{-8}+2^{-9}+2^{-12}+2^{-13}+\ldots \\
=(0.0001100110011 \ldots)_{2}
\end{gathered}
$$

Binary Representation

Binary representation

What's the decimal value of $(10.01)_{2}$

Binary representation

What's the decimal value of $(10.01)_{2}$
Answer: 2.25

Making the representation fixed width Strawman: fixed point

sign
Fixed position e.g. middle

Fixed point representation

Example: (10.011$)_{2}$

$$
\begin{array}{l|l|l|l|}
\hline 0 & 000000000000010 & 011000000000000 \\
\hline
\end{array}
$$

Problems of Fixed Point

Range?
Precision?

Problems of Fixed Point

- Limited range and precision: e.g., 32 bits
- Range: $\left[-2^{15}+2^{-16}, 2^{15}-2^{-16}\right]$
- Highest precision: 2^{-16}
\rightarrow Rarely used (No built-in hardware support)

Floating point: key idea

- Limitation of fixed point:
- Even spacing results in hard tradeoff between high precision and high magnitude
- How about un-even spacing between numbers?

Floating Point: decimal

Based on exponential notation (aka normalized scientific notation)

$r_{10}= \pm M * 10^{E}$, where $1<=M<10$
M: significant (mantissa), E: exponent

Floating Point: decimal

```
Example:
365.25 = 3.6525 * 102
0.0123 = 1.23 * 10-2
```

Decimal point floats to the position immediately after the first nonzero digit.

Floating Point: binary

Binary exponential representation

$$
\begin{aligned}
& \pm M * 2^{E}, \text { where } 1<=M<2 \\
& M=\left(1 . b_{1} b_{2} b_{3} \ldots b_{n}\right)_{2} \\
& M \text { : significant, E: exponent } \\
& (5.5)_{1 \theta}=(101.1)_{2}=(1.011)_{2} * 2^{2}
\end{aligned}
$$

Floating Point

Binary exponential representation

$$
\begin{aligned}
& \pm M * 2^{E}, \text { where } 1<=M<2 \\
& M=\left(1 . b_{1} b_{2} b_{3} \ldots b_{n}\right)_{2} \\
& M \text { : significant, E: exponent } \\
& (5.5)_{10}=(101.1)_{2}=(1.011)_{2}{ }^{*} 2^{2}
\end{aligned}
$$

(Binary) normalized representation of $(10.25)_{10}$?
(Binary) normalized representation of (10.25) ${ }_{10}$?
Answer: $(10.25)_{10}=(1010.01)_{2}=(1.01001)_{2} * 2^{3}$

Strawman FP: normalized representation in 32-bit

Strawman 32-bit FP: Example

```
            significant
#M * 2E, where 1 <= M < 2
M = ( 1.b b b b b % ... b 23 )
```

Example: $(5.5)_{10}=(101.1)_{2}=(1.011)_{2} * 2^{2}$

3130		0
0	00000010	01100000000000000000000

More Strawman 32-bit FP Examples

Example: $(65)_{10}=(1000001)_{2}=(1.000001)_{2} * 2^{6}$
3130
2322

0	00000110	00000100000000000000000

Another example: $(10.25)_{10}=(1010.01)_{2}=(1.01001)_{2} * 2^{3}$
3130
2322

0	00000011	01001000000000000000000

Strawman FP on a number line

31	30		2322		
s		$\exp (E)$	frac (F)		

Strawman 32-bit FP: pros and cons

$10 . . .010 . . .00$

- The good
- Large range $\left[1,2^{255}+\left(2^{23}-1\right) * 2^{232}\right],\left[-2^{255}-\left(2^{23}-1\right) * 2^{232},-1\right]$
- Allows easy comparison: compare FPs by bit patterns
- The bad
- No 0!
- No [-1, 1]
- Max precision (2^{-23}) not high enough
- No representation of special cases: ∞

IEEE Floating Point Standard

- Lots of FP implementations in 60s/70s
- Code was not portable across processors
- IEEE formed a committee (IEEE.754) to standardize FP format and specification.
- IEEE FP standard published in 1985
- Led by William Kahan

Prof. William Kahan
University of California at Berkeley Turing Award (1989)

IEEE Floating Point Standard

- This class only covers basic FP materials
- A deep understanding of FP is crucial for numerical/scientific computing
- More FP is covered in undergrad/grad classes on numerical methods

Numerical Computing with IEEE Floating Point Arithmetic

Including One Theorem, One Rule of Thumb, and One Hundred and One Exercises

Michael L. Overton

Goals of IEEE Standard

- Consistent representation of floating point numbers
- Address the limitation of our FP strawman
- Correctly rounded floating point operations, using several rounding modes.
- Consistent treatment of exceptional situations such as division by zero

IEEE FP: Carve out subsets of bit-patterns from normalized representation

$$
\pm M * 2^{E} \quad M=\left(1 \cdot b_{0} b_{1} b_{2} b_{3} \ldots b_{n}\right)_{2}
$$

s	\exp	fraction (F)
	$\left(b_{0} b_{1} b_{2} b_{3} \ldots b_{n}\right)_{2}$	

For normalization representation, exp can not be (1111 1111) $)_{2}$ or (0000 0000) 0

$$
\exp _{\max }=\text { ? 254, }(11111110)_{2}
$$

$$
\exp _{\min }=\text { ? } 1,(00000001)_{2}
$$

IEEE FP: Represent negative exponents using bias

$$
\pm M * 2 \mathrm{M}, \mathrm{M}=\left(1 . b_{0} b_{1} b_{2} b_{3} \ldots b_{n}\right)_{2}
$$

To represent FPs in (-1,1), we must allow negative exponent.

- How to represent negative E ?
- 2’s-omplomont
- use bias

$$
3130
$$

Why? Using bias instead of
2 's complement allows simple comparison of FPS

$$
2322
$$ using their bit-patterns

s $\quad \exp =E+127$ fraction (F)
$\left(b_{0} b_{1} b_{2} b_{3} \ldots b_{n}\right)_{2}$

IEEE FP normalized representation

$\pm M * 2{ }^{\mathrm{E}}, \mathrm{M}=\left(1 . \mathrm{b}_{0} \mathrm{~b}_{1} \mathrm{~b}_{2} \mathrm{~b}_{3} \ldots \mathrm{~b}_{\mathrm{n}}\right)_{2}$

| 3130 | | |
| :--- | :--- | :--- | :--- |
| s | $\exp =E+127$ | fraction (F) |

$\left(b_{0} b_{1} b_{2} b_{3} \ldots b_{n}\right)_{2}$
$10 . . .100 . . .00$

The gap $\left[-2^{-126}, 2^{-126}\right]$ is 2^{-125}

Represent values close and equal to 0

IEEE FP denormalized representation: represent values close and equal to 0

$\pm \mathrm{M}^{*} 2^{\mathrm{E}}$
Normalized Encoding:

$$
3130
$$

$$
2322
$$

| s | $\exp =E+127$ |
| :--- | :--- | fraction (F)

$$
1<=M<2, M=(1 . F)_{2}
$$

Denormalized Encoding:

3130	fraction (F)	
s	$\exp =00000000$	$0<=M<1, M=(0 . F)_{2}$
$E=1-$ Bias $=-126$		

Zeros

$+0.0$

0	00000000	00000000000000000000000

-0.0

1	00000000	00000000000000000000000

Denormalized FP example

Smaller than the smallest E (-126) of normalized encoding

What's the IEEE FP format of $(1.0)_{2}{ }^{*} 2-127$?
$(1.0)_{2}{ }^{*} 2^{-127}=(0.1)_{2}^{*} 2^{-126}$

0	00000000	10000000000000000000000

What we've learnt so far

- Normalized binary representation of real numbers

Answer: $(10.25)_{10}=(1010.01)_{2}=(1.01001)_{2} * 2^{3}$

What we've learnt so far: IEEE FP normalized + denormalized

3130	fraction (F)	
s	exp $=E+127$	0
If (exp! $=0 \quad \& \&$ exp! $=255) n=(1 . F)_{2}{ }^{*} 2^{\text {exp-127 }}$ (normalized)		
0	10000010	01001000000000000000000

$$
\mathrm{n}=(1.01001)_{2} * 2^{130-127}
$$

s	00000000	fraction (F)
If $($ exp $==0) n=(0 . F)_{2}{ }^{*} 2^{-126}($ denormalized $)$		
0	00000000	01001000000000000000000

$$
\mathrm{n}=(0.01001)_{2} * 2^{-126}
$$

What we've learnt so far: IEEE FP normalized + denormalized

2^{23} evenly spaced positive denormalized numbers

Precision is higher for numbers close to zero

Floating Point (cont'd) lesson plan

- IEEE FP special values
- Revisit FP: Toy 8-bit FP
- Rounding
- FP operations

IEEE FP: special values

Special Value's Encoding:
3130
2322

s	11111111	fraction (F)

values	sign	frac
$+\infty$	0	all zeros
$-\infty$	1	all zeros
NaN	any	non-zero

IEEE FP: single vs. double precision

| 6362 | 52 |
| :--- | :--- | :--- |
| s | $E+1023$ |

double precision (64 bits)

single/ double precision

	$\mathrm{E}_{\min }$	$\mathrm{E}_{\max }$	$\mathrm{N}_{\min }$	$\mathrm{N}_{\max }$
Float	-126	127	2^{-149}	$\approx 2^{128}$
Double	-1022	1023	2^{-1074}	$\approx 2^{1024}$

A toy 8-bit FP in the spirit of IEEE FP

$$
\begin{aligned}
\pm \mathrm{M}^{*} 2^{\mathrm{E}} & - \text { exponent: } 3 \text { bits } \\
& - \text { fraction: } 4 \text { bits } \\
& - \text { bias: } 3
\end{aligned}
$$

7	6	0
s	$\exp =E+3$	frac (F)

7	$43^{\mathrm{n}=(1 .)_{2} 2^{2 x-3}}$			0
s	000	frac (F)		

7		
s	$\mathrm{n}=(0 . \mathrm{F})_{2}{ }^{*} 2^{-2}$	
s	111	

Normalized encoding $\exp \neq 000,111$

Denormalized encoding $\exp =000$

Special values encoding $\exp =111$

- Smallest positive number?
- Range?
- How many distinct numbers?

A toy 8-bit FP in the spirit of IEEE FP

$$
\begin{array}{ll}
\pm M * 2 E & - \text { exponent: } 3 \text { bits } \\
& - \text { fraction: } 4 \text { bits } \\
& - \text { bias: } 3
\end{array}
$$

6	$4 \quad 3$	
s	\exp	frac (F)

$$
\begin{aligned}
& \text { If exp!=0 \&\& exp!=(111) } \\
& n=(1 . F)_{2} * 2 \text { exp-3 }
\end{aligned}
$$

Else if exp $=0$
$\mathrm{n}=(0 . \mathrm{F})_{2}{ }^{*} 2^{-2}$
$(00000001)_{\text {FP8 }}=2^{-6}$
$(01101111)_{\text {FP8 }}=15.5$

$2^{8}-2^{5}-1$ distinct numbers: there are 2^{8} total bit-patterns, 2^{5} special values, 0 has 2 bit-patterns.

Floating Point (cont'd) lesson plan

- IEEE FP special values
- Revisit FP: Toy 8-bit FP
- Rounding
- FP operations

FP: Rounding

What if the result of computation is at \bullet ?
Rounding: Use the "closest" representable value x^{\prime} for x .

4 modes:

- Round-down
- Round-up
- Round-toward-zero
- Round-to-nearest (Round-to-even in text book)

Round up vs. round down

Round up rounds to the right Round $(x)=x_{+} \quad\left(x_{+}>=x\right)$

Round down rounds to the left
Round $(x)=x_{-}\left(x_{-}<=x\right)$

Round towards zero

Rounds to the left if $x>0$
Round $(x)=x$ if $x<0$

Round to nearest; ties to even

Round to the right if x_{+}is nearer to x than x.

In case of a tie, the one with its least significant bit equal to zero is chosen.

How does CPU know if some 4-byte value should be interpreted as IEEE FP or integers?

CPU uses separate registers for floating point and ints. CPU uses different instructions for floating points and int operations.

Floating Point (cont'd) lesson plan

- IEEE FP special values
- Revisit FP: Toy 8-bit FP
- Rounding
- FP operations

Floating point operations

- FP Caveats:
- Invalid operation: 0/0, sqrt(-1), $\infty+\infty$
- Divide by zero: $x / 0 \rightarrow \infty$
- Overflows: result too big to fit
- Underflows: 0 < result < smallest denormalized value
- Inexact: round it!
- FP addition: commutative but not always associative
- FP multiplication: commutative but not always associative and distributive

Floating point in real world

- Storing time in computer games as a FP?
- Precision diminishes as time gets bigger

FP value (decimal)	Time value	FP precision	Time precision
1	1 sec	$1.19 \mathrm{E}-07$	119 nanoseconds
100	~ 1.5 min	$7.63 \mathrm{E}-06$	7.63 microseconds
10000	~ 3 hours	0.000977	.976 milliseconds
1000000	~ 11 days	0.0625	62.5 milliseconds

Floating point in the real world

- Using floating point to measure distances

FP value	Length	FP precision	Precision size
1	1 meter	$1.19 \mathrm{E}-07$	Virus
100	100 meter	$7.63 \mathrm{E}-06$	red blood cell
10000	10 km	0.000977	toenail thickness
1000000	$.16 x$ earth radius	0.0625	credit card width

Floating point trouble

- Comparing floats for equality is a bad idea!
$f=0.2000000030$
$f=0.3000000119$
$f=0.4000000060$
$f=0.5000000000$
$f=0.6000000238$
$f=0.7000000477$
$f=0.8000000715$
$f=0.9000000954$
$f=1.0000001192$
$f=1.1000001431$
$f=1.2000001669$
$f=1.3000001907$
$f=1.4000002146$
$f=1.5000002384$
$f=1.6000002623$

You are not alone in thinking FP is hard

- Many real world disasters are due to FP trickiness
- Patriot Missile failed to intercept due to rounding error (1991)
- Ariane 5 explosion due to overflow in converting from double to int (1996)

Floating point summary

- FP format is based on normalized exponential notation
- IEEE FP format
- Normalized, denormalized, special values
- Floating points are tricky
- Precision diminishes as magnitude grows
- overflow, rounding error

