C - Basics, Bitwise Operator

Lesson plan

Overview

C program organization
Bitwise operators
Control flow

Cis an old programming language

Cis an old programming language

C Java Python
1972 1995 2000 (2.0)
Procedure Object oriented Procedure & object oriented

Compiled to machine
code, runs directly on
hardware

static type
Manual memory

management

Tiny standard
library

Compiled to bytecode, Scripting language, interpreted
runs by another piece of by software
software

static type dynamic type

Automatic memory management with GC

Very Large library Humongous library

Why learn C for CSO?

e Cis asystems language

— Language for writing OS and low-level code
— System software written in C:

 Why learning C for CSO?

— simple, low-level, “close to the hardware”

The simplest C program: “Hello World”

#include <stdio.h> < Equivalent to “importing” a library package

int main()
{
printf("hello, world\n");

retu Q;
¢ A function “exported” by stdio.h

hello.c

Compile: g€e hello.c

!Run /hello T If -0 is not given, output executable file is a.out

C program with multiple files: naive
organization

int sum(int x, int y)

{

}

return x+y;

sum.c

#include <stdio.h>
#include <assert.h>

void test sum()

{
int r = sum(1,1);
assert(r == 2);

¥

int main()
{

test _sum();

¥

test.c

##include <stdio.h>

int main()

{

printf(“sum=%d\n”, sum(-1,1));

}

Compile:

Run:

Jtest
.Ja.out Wasteful

main.c

gcc sum.c test.c -o test

gcc sum.c main.c

Sum.c compiled twice.

C program with multiple files: *.h vs *.c files

Equivalent to “importing” a package

int sum(int x, int y) #include <stdio.y #include <stdio.h>
{ #include <assert h> #include “sum.h”
. #include “s@ , ,
return x+y; int main()
} {
void test_sum() printf(“sum=%d\n”, sum(-1,1));
sum.c { }

int r = sum(1,1);

¥

sum-h int main()
{
test _sum();
}

test.c

Common compilation sequence

mary) T called
Source . 1.
Code | 9¢cc-c main.c object \ linking
main.c - fl_Ie (Binary)
main.o gce main.o sum.o—> | Executable
> a.out
Source _ inary /
Code | J0T°2 | object
sum.c ' file
sum.o
D (Binary)
e gce —c test.c inary gcc test.o sum.o -o test—> | Executable
test.c " object test
test.c file /'

C project uses the make tool to automate compiling with dependencies.

Makefile

Basic C

e (C’s syntax is very similar to Java

— Java borrowed its syntax from C

f Initial value Alfuninitialized,

variable can have any value

Variable declaration: int a = 1;

Typej Name

Primitive Types (64-bit machine)

Either a character or an intger

type j size (bytes) example
(unsigned) char 1 charc ="'a’
(unsigned) short 2 shorts = 12
(unsigned) int 4 inti =1
(unsigned) long 8 longl =1
float 4 float f = 1.0
double 8 double d = 1.0
_—» pointer 8 int *x = &

Next lecture
Old C has no native boolean type. A non-zero integer

represents true, a zero integer represents false

C99 has “bool” type, but one needs to include
<stdbool.h>

Implicit conversion

int main()

{

int a = -1;
unsigned int b = 1;

if (a < b) {

printf("%d is smaller than %d\n", a, b);
} else if (a > b) {

printf("%d is larger than %d\n”, a, b);

}

return 0;

Compiler converts int types to the one with the larger value (e.g.
char = unsigned char = int = unsigned int)

-1 is implicitly cast to unsigned int (4294967295),,

Explicit conversion (casting)

int main()

{
int a = -1;
unsigned int b = 1;

if (a < (int) b) {

printf("%d is smaller than %d\n", a, b);
} else if (a > (int) b) {

printf("%d is larger than %d\n”, a, b);
}

return 0;

Operators

Arithmetic +, -, * /, %, ++, --
Relational ==, I=, >, <, >=, <=
Logical &&, ||, !

Bitwise & |, N, ~, >>, <<

Arithmetic, Relational and Logical operators are identical to java’s

Bitwise AND: &

Truth table (of boolean function AND)

How many rows
if function has
n boolean (aka
1-bit) inputs?

2n

—_—

L B O O
R O —» O
L O O O

Operator & applies AND bitwise to two integers

(01101001),

01010101
Result of 0X69 & 0x55)2

(01000001),

Example use of &

« & is often used to mask off bits

SO
&0
&1

b
/b

b is any bit

int clear _msb(int x) {

return x & OX7fffffff;

Bitwise OR: |

x|y | xORy
0 0 0
0 1 1
1 0 1
1 1 1

Operator | applies OR bitwise to two integers

(01101001),

Result of 0x69 | 0x55 | (01010101)

(01111101),

Example use of |

« | ca

be used to turn some bits on
b|1=
b|0=

n
1
0

int set msb(int x) {
return x | 9x80000000;

Bitwise NOT: ~

1 0

Operator ~ applies NOT bitwise to two integers

~(01101001),
result of ~Ox69

(10010110),

Bitwise XOR: A

x|y | xXORy
0 0 0
0 1 1
1 0 1
1 1 0

Operator * applies XOR bitwise to two integers

(01101001),

result of Ox6970x55 A(01010101),

(00111100),

Bitwise left-shift: <<

X <<y, treat x as a bit-vector, shift x left by y positions

— Throw away bits shifted out on the left
— Fill in O’s on the right

result of ©x69<<3 ? (01101001),

=(01001000),

Bitwise right-shift: >>

e X >>Yy, shift bit-vector x right by y positions

— Throw away bits shifted out on the right
— Logical shift: Fill with O’s on left
— Arithmetic shift: Replicate msb on the left

Result of (logical) right-shift: 0xa9 >> 3 (10101001),

=(00010101),

Result of (arithmetic) right-shift: Oxa9 >> 3 =(11110101),

Which shiftisusedinC?

Arithmetic shift for signed numbers

Logical shifting on unsigned numbers

int a = 1; unsigned int b = -1;
a = a>>31; b =Db >>30;

int b = -1; b - B

b =b >>31;

a=?? b=7??

Example use of shift

int multiply by powers of two(int x, int p)
{

¥

return x << p;

int divide by powers of two(int x, int p)

{
}

return x >> p;

Caveat: right-shift rounds down, different from
integer division “/” which rounds towards zero.
e.g.-1>>1=-1, but-1/2=0

Example use of shift

// clear bit at position pos
// rightmost bit is at @th pos

int clear_bit at pos(int x, int pos)
{
unsigned int mask = 1 << pos;
return x & (~mask);

Lesson plan

Overview

C program organization
Bitwise operators
Control flow

C’s Control flow

e Same as Java

e conditional:
— if ... elseif... else
— switch

* loops: while, for
— continue
— break

goto statements allow jump anywhere

goto /abel

while (cond) {
for(...) {

} for(...) {
B: | for(...) {
| goto error
Any control flow primitive can be }
expressed as a bunch of goto’s. }
.
A: |

if (cond = false) goto B; error:

code handling error

/

The only acceptable scenario for using goto

goto A
B:

Avoid goto’s whenever possible

Edgar Dijkstra: Go To Statement Considered Harmful

Go To Statement Considered Harmful

Key Words and Phrases: go to statement, jump instruction,
branch instruction, conditional clause, alternative clause, repet-
itive clause, program intelligibility, program sequencing

CR Categories: 4.22, 5.23, 5.24

- EDITOR:

For a number of years I have been familiar with the observation
that the quality of programmers is a decreasing function of the
density of go to statements in the programs they produce. More
recently I discovered why the use of the go to statement has such
disastrous effects, and I became convinced that the go to state-
ment should be abolished from all “higher level” programming
languages (i.e. everything except, perhaps, plain machine code).
At‘that time I did not attach too much importance to this dis-
covery; I now submit my considerations for publication because
in very recent discussions in which the subject turned up, I have
been urged to do so.

My first remark is that, although the programmer’s activity
ends when he has constructed a correct program, the process
taking place under control of his program is the true subject
matter of his activity, for it is this process that has to accomplish
the desired effect; it is this process that in its dynamic behavior
has to satisfy the desired specifications. Yet, once the program has
been made, the “making’ of the corresponding process is dele-

dynamic progress is only characterized when we also give to which
call of the procedure we refer. With the inclusion of procedures
we can charscterize the progress of the process via a sequence of
textual indices, the length of this sequence being equal to the
dynamic depth of procedure calling.

Let us now consider repetition clauses (like, while B repeat A
or repeat A until B). Logically speaking, such clauses are now
superfluous, because we can express repetition with the aid of
recursive procedures. For reasons of realism I don't wish to ex-
clude them: on the one hand, repetition clauses can be imple-
mented quite comfortably with present day finite equipment; on
the other hand, the reasoning pattern known as “induction”
makes us well equipped to retain our intellectual grasp on the
processes generated by repetition clauses. With the inclusion of
the repetition clauses textual indices are no longer sufficient to
describe the dynamic progress of the process., With each entry into
a repetition clause, however, we can associate a go-called *“‘dy-
nami¢ index,"” inexorably counting the ordinal number of the
corresponding current repetition. As repetition clauses (just as
procedure calls) may be applied nestedly, we find that now the
progress of the process ean always be uniquely characterized by a
(mixed) sequence of textual and/or dynamie indices. 1

The main point is that the values of these indices are outside
programmer's control; they are generated (either by the write-up
of his program or by the dynamic evolution of the process) whether

Avoid goto’s whenever possible

T COULD RESTRUCTURE | | EH, SCREW GooD PRACTICE.
THE PROGRAMS FLOW | | HOW BAD CAN 1T BE?

(R OSE ONE LITTLE goto main.sub3;
GO INSTEAD. b,

\
?)ﬁ f ; ‘? *COMPILE* el

C scope rules

* Local variable: defined within a procedure

— Scope: within the procedure

* Global variable: defined outside of any procedure
— Scope: within the file unless exported via *.h

int x = 9;

inty = 1;

void swap(int x, int y) {
int tmp = x;
X =Y,
y= X;

}

int main() {
int x = 0;
inty = 1;
swap(X, Y);

}

Summary

* C program’s basic organization
— *.cvs. *.hfiles
— Compilation and make

* Bitwise operators, &, |, ~, ?, >>, <<
— >> (arithmetic vs. logical)

e Control flow
— goto is general, but results in spaghetti code

