
Large C Program organization,
I/O

Jinyang Li

This lesson

• More on C project organization
– C pre-processing

• Doing I/O

Lab2’s compilation sequence

Source
Code

wordcount.c

Source
Code
list.c

Source
Code

clab2_test.c

(Binary)
object file
wordcount.o

gcc –c wordcount.c

gcc –c list.c (Binary)
object

file
list.o

gcc –c clab2_test.c (Binary)
object file
clab2_test.o

compiling

Source
Code

htable.c

gcc –c htable.c (Binary)
object

file
htable.o

linking

gcc clab2_test.o list.o htable.o –o clab2_test
(Binary)

Executable
clab2_test

(Binary)
Executable
wordcount

gcc wordcount.o list.o htable.o –o wordcount

Role of header files
…
typedef struct lnode{

kv_t tuple;
struct lnode *next;

}lnode_t;

void list_init(lnode_t **headdp);
bool list_insert_with_accum(…); list.h

…
#include “list.h”

void simple_list_test()
{

lnode_t *headp;
list_init(&headp);
panic_cond(headp==NULL, “….”);

} clab2_test.c

If header file is not
included, gcc would

complain about unknown
function “list_init”

header file includes
type definitions and
exported function signatures

Exporting global variables
typedef struct lnode{

kv_t tuple;
struct lnode *next;

}lnode_t;
extern int num_inserts;
void list_init(lnode_t **headdp);
bool list_insert_with_accum(…); list.h

#include “list.h”

void simple_list_test()
{

lnode_t *headp;
list_init(&headp);
list_insert_with_accum(…);
printf(“num_inserts=%d\n”, num_inserts);

} clab2_test.c

int num_inserts;
bool list_insert_with_accum(…)
{
num_inserts++;

} list.c

“Extern” declares
variable but does not
allocate space

Defines global
variable and allocates
space (upon program
start)

Uses global variable
exported in “list.h”

C does not have explicit namespace
• Scope of an (exported) global variable or function is across

all files (that are linked together)
– What if different files happen to use the same global variable

name or function name?
• Restrict scope of a global variable / function to this file only

– Use the “static” keyword

#include “list.h”
static int num_inserts;
static internal_func(…) {

...
} list.c

No other files can use the
num_inserts variable and

internal_func function

“static” keyword has a diff meaning
when prefixing local variables

• Normal local variables are de-allocated upon
function exit

• Static local variables are not de-allocated
– offers private, persistent storage across function

invocation

void insert(…) {
static int n_inserts = 0;
...
n_inserts++;
printf(“number of inserts %d\n”, n_inserts);

}

initialized once,
never deallocated

(like a global
variable, except
with local scope)

C standard library

<assert.h> assert

<ctype.h> isdigit(c), isupper(c), isspace(c), tolower(c), toupper(c) ..

<math.h> log(f) log10(f) pow(f, f), sqrt(f), ...

<stdio.h> fopen, fclose, fread, fwrite, printf, ...

<stdlib.h> malloc, free, atoi, rand

<string.h> strlen, strcpy, strcat, strcmp

To read manual, type
man 3 strlenSection 3 of

manpage is
dedicated to
C std library

The C pre-processor

• All the hashtag directives are processed by C
pre-processor before compilation

• #include <f.h>
– insert text of f.h in the current file
– with <f.h> , preprocessor searches for f.h in

system paths
– with “f.h”, preprocessor searches for f.h in the

local directory before searching in system paths

C processor supports macros

• #define name replacement_text

#define NITER 10000

int main()
for (int i = 0; i < NITER; i++) {

....
}

}

It’s better to write:
static const int niter = 10000;

C Macros

• Macro can have arguments
• Macro is NOT a function call

#define SQUARE(X) X*X

a = SQUARE(2);

b = SQUARE(i+1);

c = SQUARE(i++);

a = 2*2;

b = i+1*i+1;

C Macros

• Macros can have arguments
• Macro is NOT a function call

#define SQUARE(X) (X)*(X)

a = SQUARE(2);

b = SQUARE(i+1);

c = SQUARE(i++);

a = (2)*(2);

b = (i+1)*(i+1);

c = (i++)*(i++);

what is NULL? #define NULL ((void *)0)

Doing I/O in C

I/O in C

• I/O facilities are not part of core C language
– provided by OS facilities (called syscalls)
– For a list of syscalls provided, type `man 2 syscalls`

• Two interfaces
– (low level) UNIX(unbuffered) I/O:

• A thin wrapper around OS I/O related syscalls.
– (high level) Buffered I/O:

• implemented by stdio library
• uses low level interface internally
• Buffers multiple I/Os together into a single low-level I/O call

for better performance.

Buffered I/O

• each I/O stream is represented by a file
pointer of type FILE*

• Obtain the file pointer using fopen
– file should be closed upon finish: fclose

• Access the file using file pointer with functions
– fread, fwrite, fgetc, fgets Type

man stdio

Buffered I/O

• each I/O stream is represented by a file pointer
of type FILE*

• Special streams: no need to explicitly open them
– stdin
– stdout
– stderr

Buffered I/O example
• Count # of lines in a file

// open file using (fopen)

// while not end of file stream
read file line by line (fgets)
increment counter

// close file (fclose)
// print out counter value

Buffered I/O example
#include <stdio.h>

int main(int argc, char **argv)
{

//open file based on argument

int n = countlines(fp);

//close file

printf(“# of lines %d\n”, n);
}

FILE *fopen(const char *path,
const char *mode);

fopen opens the file whose name
is the string pointed to by path
and associates a stream with it.

The argument mode points to a
string beginning with one of the
following sequences

r Open file for reading.
r+ Open for reading and writing.
w Truncate file to zero length or
create file for writing.
....

Type “man fopen”

Buffered I/O example

int main(int argc, char **argv)
{

//open file based on argument
FILE *fp = fopen(argv[1], “r”);

int n = countlines(fp);

//close file
fclose(fp);

printf(“# of lines %d\n”, n);
}

Buffered I/O example

int countlines(FILE *fp)
{

int count = 0;

while (1) {
//read a line using fgets
count++;

}

return count;
}

char *fgets(char *s, int size, FILE
*stream);

fgets() reads in at most one less
than size characters from stream
and stores them into the buffer
pointed to by s. Reading stops
after an EOF or a newline. If a
newline is read, it is stored into
the buffer. A terminating null byte
('\0') is stored after the last
character in the buffer.

fgets() returns s on success, and
NULL on error or when end of file
occurs while no characters have
been read.

Buffered I/O example

int countlines(FILE *fp)
{

int count = 0;

while (1) {

if (!fgets(buf, BUFSZ, fp))
break;

count++;

}

return count;
}

It’s the responsibility
of the caller (not fgets)
to allocate buffer for
reading a line.

#define BUFSZ 1000

char *buf = malloc(BUFSZ);

🤓🤓🤓🤓Any problem??

Buffered I/O example

#define BUFSZ 1000
int countlines(FILE *fp)
{

int count = 0;
char buf[BUFSZ];

while (fgets(buf, BUFSZ, fp)) {
count++;

}

return count;
}

⚠ What if a line is
longer than BUFSZ?

char *fgets(char *s, int size, FILE
*stream);

fgets() reads in at most one less
than size characters from stream
and stores them into the buffer
pointed to by s.
…

Buffered I/O example

int countlines(FILE *fp)
{

int count = 0;
char buf[BUFSZ];

while (fgets(buf, BUFSZ,fp)) {
if (buf[strlen(buf)-1]!=‘\n’)

continue;
count++;

}

return count;
}

Replace with
if buf[BUFSZ-2]!=‘\n’?

Buffered I/O example
int countlines(FILE *fp)
{

int count = 0;
char buf[BUFSZ];
while (fgets(buf, BUFSZ,fp)) {
if (buf[strlen(buf)-1]!=‘\n’)

continue;
count++:

}
return count;

}

BufferedReader br = new BufferedReader(new FileReader(file)));
String line;
int count = 0;
while ((line = br.readLine()) != null) {

count++;
}

buffer allocated by caller

buffer allocated by callee

(Low-level) UNIX I/O

• Used by stdio library to implement buffer I/O
• A thin wrapper to interface with OS kernel

• Each I/O stream is represented by an integer
(called file descriptor).

• Special file descriptors:
– 0: standard input
– 1: standard output
– 2: standard error

system call interface

UNIX I/O example: Count lines

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int main(int argc, char **argv)
{

//open file based on argument
int fd = open(argv[1], O_RDONLY);

int n = countlines(fd);

//close file
close(fd);

printf(“# of lines %d\n”, n);
}

type “man 2 open”

UNIX I/O example: count lines
#include <unistd.h>
int countlines(int fd)
{

int count = 0;
char buf[BUFSZ];
ssize_t n;

while ((n = read(fd, buf, BUFSZ)) > 0) {
for (ssize_t i = 0; i < n; i++) {

if (buf[i] == ‘\n’) {
count++;

}
}

}

return count;
}

ssize_t read(int fd, void
*buf, size_t count);

read() attempts to read up
to count bytes from file
descriptor fd into the
buffer starting at buf.

On success, the number
of bytes read is returned
(zero indicates end of file),
On error, -1 is returned...

typedef long ssize_t

Type “man 2 read”

What is FILE?
typedef struct {

} FILE;

Can you implement fopen, fclose, fgets using open, close, and read?
see page 176-177 of K&R

int cnt; // characters left in buffer
char *ptr; // next character in the buffer
char *base; // location of buffer
int mode; // mode of file access
int fileno; // file descriptor

Summary

• Review C project organization
– Header files
– C preprocessing

• I/O
– Lower level I/O (open, read, write)

• Unbuffered. Directly interface with OS (syscall)
– Buffered I/O (fopen, fread, fwrite, fgets)

• Built on top of low level I/O with a buffer.
• Improves performance by buffering multiple I/Os into a

single low-level I/O call.

	�Large C Program organization,�I/O
	This lesson
	Lab2’s compilation sequence
	Role of header files
	Exporting global variables
	C does not have explicit namespace
	“static” keyword has a diff meaning when prefixing local variables
	C standard library
	The C pre-processor
	C processor supports macros
	C Macros
	C Macros
	Doing I/O in C
	I/O in C
	Buffered I/O
	Buffered I/O
	Buffered I/O example
	Buffered I/O example
	Buffered I/O example
	Buffered I/O example
	Buffered I/O example
	Buffered I/O example
	Buffered I/O example
	Buffered I/O example
	(Low-level) UNIX I/O
	UNIX I/O example: Count lines
	UNIX I/O example: count lines
	What is FILE?
	Summary

