Building an ALU

Jinyang Li

What we've learnt so far

- Basic logic design
- Logic circuits == Boolean expressions
- How to build a combinatorial logic circuit
- Specify the truth table
- Output is the sum of products (implemented in PLA, programmable logic array)
- Common CL
- Decoder
- Multiplexer

Lesson plan

- ROM (another way to implement CL)
- ALU
- Logical ops: AND/OR
- Arithmetic ops: addition, subtraction...

ROM (read-only memory)

- A combinatorial component for storing (fixed) data
- Programmed in the factory or field
$\log _{2} \mathrm{n}$ inputs for address

ROM (read-only memory)

- Anxm ROM can store the truth table for m functions defined on $\log _{2} n$ variables.

$$
\begin{aligned}
& X_{1}=A \\
& X_{0}=\bar{A} \bullet \bar{B}+A \bullet B
\end{aligned}
$$

A	B	X1	X0	00:	01
0	0	0	1	01:	00
0	1	0	0	в 10:	10
1	0	1	0	11:	11
1	1	1	1		x_{1}

ROM (read-only memory)

- Both ROM and PLA can impl. boolean functions
- ROM is not as efficient for sparse functions
- \# of entries grows exponentially with inputs
- ROM is easier to change if function changes

Array of logic elements

- So far, our circuits work on 1-bit inputs/outputs
- How to build circuits with n-bit inputs/outputs?

Array of logic elements

- 64-bit multiplexor: an array of 64 1-bit multiplexors

ALU overview

Example

$$
\text { operation } \begin{cases}00 & A \& B \\ 01 & A \mid B \\ 10 & A+B\end{cases}
$$

Implementing ALU: AND

Implementing ALU: AND

Implementing ALU: OR

Implementing ALU: adder

Implementing the adder: 1-bit adder

- Recall how base-2 addition works

At each bit position (e.g. pos1), take as inputs carryin (c1), a1, b1, and compute sum (s1), carryout (c2). Feed c2 to the next bit position as carryin.

1-bit adder

Inputs			Ortpris	
a	b	Garyln	Garyout	Sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
Brute force PLA				
	1	1	1	0
	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

1-bit adder: computing CarryOut

\mathbf{a}	\mathbf{b}	Carryln
0	1	1
1	0	1
1	1	0
1	1	1

Rows where CarryOut is 1

1-bit adder: computing CarryOut

$$
\text { CarryOut }=(b \cdot \text { CarryIn })+(a \cdot \text { CarryIn })+(a \cdot b)
$$

1-bit adder: computing Sum

Sum $=(\mathrm{a} \cdot \overline{\mathrm{b}} \cdot \overline{\text { CarryIn }})+(\overline{\mathrm{a}} \cdot \mathrm{b} \cdot \overline{\text { CarryIn }})+(\overline{\mathrm{a}} \cdot \overline{\mathrm{b}} \cdot$ CarryIn $)+(\mathrm{a} \cdot \mathrm{b} \cdot$ CarryIn $)$					
Inputs					/
a	b	Gaxyln	GaxyOut	Sum	-
0	0	0	0	0	-
0	0	1	0	1	
0	1	0	Q	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

Subtraction

- Idea: $a-b=a+(-b)$
- How to calculate 2's complement?
setimert=1 Subtraction in 1-bit ALU carryln=1

Extend 1-bit ALU to 64-bit

Extend 1-bit ALU to 64-bit ALU

Extend ALU to include NOR

$$
\overline{A+B}=\bar{A} \cdot \bar{B}
$$

Set Binvert=1, Ainvert=1 $\mathrm{Op}=(00)_{2}$
to compute a NOR b

Extend ALU to include slt

- RISC-V slt (set-less-than) instruction
- Result $=(\mathrm{A}<\mathrm{B})$? 1 : 0 Signed
- X86 equivalent: cmpq \%rbx,\%rax setl \%rcx

New input "Less":

- always 0 for bits1:63
- Set to 1 for bit0 if $a<b$

Extend ALU to include slt

- $A<B$ iff:
- (A-B) is negative (MSB is 1)
- (A-B) overflowed
- But not both

Extend ALU to include slt

Downside of ripple carry?

In search of a faster adder

- Ripple carry:
- Delay: 64, Gate count: 64*c
- Brute-force (truth table->PLA)
- Delay: 2, Gate count: O(2 $\left.2^{64+64}\right)$
- Clever designs in between?
- Idea \#1: (Carry lookahead) compute multiple carry-bits at a time

Faster adder: carry lookahead

- Idea \#1: (Carry lookahead) compute multiple carry-bits at a time

Faster adder: carry lookahead

- Idea \#1: (Carry lookahead) compute multiple carry-bits at a time

Computing all carry-bits of a 4-bit adder:
$\mathrm{cl}=\mathrm{g} 0+(\mathrm{p} 0 \cdot \mathrm{c} 0)$
$\mathrm{c} 2=\mathrm{g} 1+(\mathrm{p} 1 \cdot \mathrm{~g} 0)+(\mathrm{pl} \cdot \mathrm{p} 0 \cdot \mathrm{c} 0)$
$\mathrm{c} 3=\mathrm{g} 2+(\mathrm{p} 2 \cdot \mathrm{~g} 1)+(\mathrm{p} 2 \cdot \mathrm{pl} \cdot \mathrm{g} 0)+(\mathrm{p} 2 \cdot \mathrm{p} 1 \cdot \mathrm{p} 0 \cdot \mathrm{c} 0)$
$\mathrm{c} 4=\mathrm{g} 3+(\mathrm{p} 3 \cdot \mathrm{~g} 2)+(\mathrm{p} 3 \cdot \mathrm{p} 2 \cdot \mathrm{~g} 1)+(\mathrm{p} 3 \cdot \mathrm{p} 2 \cdot \mathrm{p} 1 \cdot \mathrm{~g} 0)$ $+(\mathrm{p} 3 \cdot \mathrm{p} 2 \cdot \mathrm{p} 1 \cdot \mathrm{p} 0 \cdot \mathrm{c} 0)$

Delay? 3 4-bit ripple carry delay: 2 * 4

Faster adder: carry lookahead

- Idea \#1: (Carry lookahead) compute multiple carry-bits at a time

Computing all result bits in a 4-bit adder:

$$
\begin{array}{r}
s_{i}=a_{i} \cdot \bar{b}_{i} \cdot \bar{c}_{1}+\bar{a}_{i} \cdot b \overline{c_{i}}+\bar{a}_{i} \cdot \bar{b}_{i} c_{i}+a_{i} \cdot b_{i} \cdot c_{i} \\
\\
\quad \text { for } i=0,1,2,3
\end{array}
$$

Faster adder: carry lookahead

- Build a 16-bit adder with carry-ahead 4-bit adders

Summary

- ROM

- ALU

ALU operation

