
Building an ALU

Jinyang Li

What we’ve learnt so far
• Basic logic design
– Logic circuits == Boolean expressions

• How to build a combinatorial logic circuit
– Specify the truth table
– Output is the sum of products (implemented in PLA,

programmable logic array)

• Common CL
– Decoder
– Multiplexer decoder

2

out3
out2
out1
out0

Mux

2
S

in3

in2

in1

in0

out

Lesson plan

• ROM (another way to implement CL)
• ALU
– Logical ops: AND/OR
– Arithmetic ops: addition, subtraction…

ROM (read-only memory)

• A combinatorial component for storing (fixed) data
• Programmed in the factory or field

n x m ROM Height: n entries

Width: m bits per entry

....

log2n inputs
for address

... m outputs

ROM (read-only memory)
• A n x m ROM can store the truth table for m

functions defined on log2n variables.

X1 = A
X0 = A•B + A•B

A B X1 X0
0 0 0 1
0 1 0 0
1 0 1 0
1 1 1 1

2 x 2 ROM

01
00
10
11

00:
01:
10:
11:

A

B

X1 X0

ROM (read-only memory)

• Both ROM and PLA can impl. boolean functions
• ROM is not as efficient for sparse functions
– # of entries grows exponentially with inputs

• ROM is easier to change if function changes

Array of logic elements

• So far, our circuits work on 1-bit inputs/outputs
• How to build circuits with n-bit inputs/outputs?

MUX

2

sel

in3
in2

in1
in0

64

64
64

64

64 out

Bus: a collection of data
lines treated together

as a single signal

Array of logic elements
• 64-bit multiplexor: an array of 64 1-bit multiplexors

MUX

MUX

MUX

…

sel

In363
In263
In163
In063

In31
In21
In11
In01

In30
In20
In10
In00

Out0

Out1

Out63

0th bit (LSB)
of input

1st bit of
input

63rd bit of
input (MSB)

ALU overview

ALU

operation

A

B
Result

Op
00 A & B

01 A | B

10 A + B

Example

Implementing ALU: AND

Mux
Result

A&B

A|B

A+B

operation

Implementing ALU: AND

Mux

Result

A&B

A|B

A+B

operation

A

B

Implementing ALU: OR

Mux

Result

A&B

A|B

A+B

operation

A

B

Implementing ALU: adder

Mux

Result

A&B

A|B

A+B

operation

A

B

+

Implementing the adder: 1-bit adder
• Recall how base-2 addition works

0 0 1 1
1 0 0 1

1 1 0 0

11 000
carryIn at pos0
carryOut at pos0 = carryIn at pos1

carryOut at pos1 = carryIn at pos2

carryOut at pos2 = carryIn at pos3
carryOut at pos3

At each bit position (e.g. pos1), take as inputs carryIn(c1), a1, b1,
and compute sum (s1), carryout(c2). Feed c2 to the next bit position as carryIn.

a3 a2 a1 a0

b3 b2 b1 b0

s3 s2 s1 s0

+ +

c4 c3 c2 c1 c0

1-bit adder

+

CarryIn

A

B
Sum

CarryOut

1-bit adder+
CarryIn

A

B
Sum

CarryOut

Brute force PLA

1-bit adder: computing CarryOut

Rows where CarryOut is 1

1-bit adder: computing CarryOut

1-bit adder: computing Sum

Subtraction

• Idea: a – b = a + (-b)
• How to calculate 2’s complement?

Subtraction in 1-bit ALU

Result

operation

carryOut

A&B

A|B

A±B

A

B
+

Mux

Mux

BInvert carryIn

Set Binvert=1
carryIn=1
Op=(10)2
to compute A-B

Subtraction
reuses

hardware
for addition

Extend 1-bit ALU to 64-bit

Result

operation

carryOut

A&B

A|B

A±B

A

B
+

Mux

Mux

BInvert carryIn

Extend 1-bit ALU to 64-bit ALU

a63

b63
Result63ALU63

Extend ALU to include NOR

Set Binvert=1, Ainvert=1
Op=(00)2
to compute a NOR b

Extend ALU to include slt
• RISC-V slt (set-less-than) instruction
– Result = (A < B) ? 1 : 0 Signed
– X86 equivalent: cmpq %rbx,%rax setl %rcx

Less

0

1

2

3

New input “Less”:
• always 0 for bits1:63
• Set to 1 for bit0 if a<b

ALU unit for bits 0-62

Extend ALU to include slt

ALU unit for MSB(bit63)

• A < B iff:
– (A-B) is negative (MSB is 1)
– (A-B) overflowed
– But not both

MSB
XOR

Set

Wire to “Less”
input of the

least significant
bit ALU

Extend ALU to include slt

ALU63
Result63a63

b63

Downside of ripple carry?

a63

b63
Result63ALU63

Must wait for
sequential evaluation
of all 64 1-bit adders

In search of a faster adder

• Ripple carry:
– Delay: 64, Gate count: 64*c

• Brute-force (truth table->PLA)
– Delay: 2, Gate count: O(264+64)

• Clever designs in between?
• Idea #1: (Carry lookahead) compute multiple

carry-bits at a time

Faster adder: carry lookahead

• Idea #1: (Carry lookahead) compute multiple
carry-bits at a time

ci+1 = aibi + (ai + bi)ci

CarryIn to i-th bit
= CarryOut of (i-1)-th bitCarryOut of i-th bit

= CarryIn of (i+1)-th bit

ci+1 = gi + pici gi = aibi , pi= ai + bi

gi

Generate

generates carryOut
regardless of carryIn

pi

Propagate

propagates carryIn
to carryOut

Faster adder: carry lookahead

• Idea #1: (Carry lookahead) compute multiple
carry-bits at a time

Computing all carry-bits of a 4-bit adder:

Delay? 4-bit ripple carry
delay: 2 * 4

3

Faster adder: carry lookahead

• Idea #1: (Carry lookahead) compute multiple
carry-bits at a time

Computing all result bits in a 4-bit adder:

Faster adder: carry lookahead
• Build a 16-bit adder with carry-ahead 4-bit adders

carryIn (C0)

ALU0

a[0:3]

b[0:3]

ALU1

ALU2

ALU3

a[4:7]

b[4:7]

a[8:11]

b[8:11]

a[12:15]

b[12:15]

C1

C2

C3

carry
lookahead

carryOut (C4)

p0
g0

p1
g1

p2
g2

p3
g3

P0
G0

P1
G1

P2
G2

P3
G3

P0 = p3· p2· p1· p0
P1 = p7· p6· p5· p4

P2 = p11· p10· p9· p8
P3 = p15· p14· p13· p12

G0 = g3+ p3·g2 +
p3· p2·g1+ p3· p2·p1 ·g0

G1 = g7+ p7·g6 +
p7· p6·g5+ p7· p6·p5 ·g4

G2 = g11+ p11·g10 +
p11· p10·g9+ p11· p10·p9·g8

G3 = g15+ p15·g14 +
p15·p14·g13+ p15·p14·p13·g12

Summary

• ROM

2 x 2 ROM

01
00
10
11

00:
01:
10:
11:

A

B

X1 X0

Addr output

• ALU

