Pipelined CPU

Jinyang Li

Based on the slides of Patterson and Hennessy

What we’ve learnt: basic 5-stage pipeline (datapath

| Instruction fetch l Instruction decode Execution l Memory Write-back I
IF/ID ID/EX EX/MEM MEM/WB
> Add > >
4 — »Add Sum
Shift
left 1
—(0
M
u PC Address » | Read
x s ” | register 1 Read > >
- B data 1
% » | Read > Zero > —>
Instruction c ~ |register2 ALU
— Registers ALU . _ Read
memory — _ | wite 5:;‘12 > result - | Address data []

register / Data

Write memory

data

R | write
o " | data
32 imm | 64 >

> Gen +’

Y

Pipelined Control (Simplified)

\

“xe=2°

 J

> Add

IF/ID

ID/EX

EX/MEM

PC

Address

Instruction
memory

Y

Read

Shift
left 1

Y

>Addsum

c -
S >
= i Read .
3 register 1 P >
7 Read
£ | register 2
Registers
Write Read >
»| register data 2
»| Write
data
Instruction
I\ [31-0] 32 [|mm | 64
vl Gen
Instruction
[30, 14-12]
& -
Instruction
[11-7] .

Branch

MEM/WB

ALUOp

emtoRe

\

oxcS-

Setin WB

Setin EX

Set in MEM

Pipelined Control

Control signals derived from instruction, same as
/ in single-cycle implementation

Instruction

—1 Control }

Y Y

IF/1D

N,
\ R wWB
- M
/ . - ALUS
/ Tex [
\/ - ALUOp
ID/EX

Y

Y

EX/MEM

- MemWrite

Branch

PCSrc

__MemToReg

Y

- —RegWrite

MEM/WB

Data Hazards in ALU Instructions

* Example instruction sequence:

sub x2, x1,x3
and x12,x2,x5
or x13,Xx6,x2
add x14,x2,x?2
sd x15,100(x2)

* Solution: forwarding (aka bypassing)
* Use result after it’s computed; don’t wait for it to be stored in register

Data hazard in ALU instructions

Time (in clock cycles) >
Value of CC1 CC2 CC3 CC4 CC5S CC6 CC7 CcC38 CC9

register x2: 10 10 10 10 10/-20 -20 =20 —20 —20
Program
execution
order Data hazards
(in instructions) - - -
| — 1
sub x2, x1, x3 M Regl — —[DM Regl
L — B J
o
_7/ : —
and x12, x2, x5 IM [[5Reg /D™ Reg
o — — \
|_ et
or x13, x6, x2 IM — —E{Reg) }
B | P
| —& — |
add x14, x2, x2 IM — —'ZilReg \egjl
— |
vy sd x15, 100(X2) IM — DM RngI

Using forwarding to resolve data hazard (cycle-4)

Instruction fetch | Instruction decode | Execution | Memory | Write-back I
add x14,x2,x2 or x13,x6,x2 and x12,x2,x5 sub x2,x1,x3
IF/ID ID/EX EX/MEM MEM/WB
> Add > >
4 —] >Add Sum
Shift
left 1
¢
0
M
u PC Mo—»|Address _ | Read
X B > | register 1 Read > >
>\ 1 5 data 1
% Read Zero > >
. register 2
In;:;c:non > = ’ Registers poad >ALU ALUL »| Address el - > 1
ry Write data 2 > OM result data M
register u Data u
Write X memory Ox
" | data : < 1
R | write
o | data
32 Imm 64 >
> Gen +>‘

Using forwarding to resolve data hazard (cycle-5)

Instruction fetch

sd x15,100(x2)

Instruction decode

add x14,x2,x2

|

or x13,x6,x2

Execution

and x12,x2,x5

Memory

4

o
xc =

PC

| Write-back I
sub x2,x1,x3

MEM/WB

o
xc=

IF/ID ID/IEX EX/MEM
> Add >
4 —] >Add Sum
Shift
left 1
Address _ | Read
N > | register 1 Read > >
8 data 1
2 Read Zero > —>
2 °
Instruction £ reglster% ist >ALU ALU Read
memory > eOISTErS Read > result |~ | Address data

Write data 2 o -

register Data

Write memory

" | data [
. _ | Write
g " | data
32 Imm 64
> Gen [%

4

Forwarding Paths

Registers

ID/EX

Rs1

Rs2

Rd

A Forwar
b

ForwardB

EX/MEM
EX-hazard
dA
>ALU —-—o—»
Data
memory
> -
>
EX/MEM.RegisterRd
- -

Forwarding
unit

MEM/WB

MEM/WB.RegisterRd

MEM-hazard

0
.
.
.
.
.
.

Detecting when to use forwarded data
) (6] IS0
* Pass register numbers along pipeline

e e.g., ALU operand register numbers (in EX stage) are:
* ID/EX.RegisterRs1, ID/EX.RegisterRs2 RA
- -~
* Data hazards when

1a. EX/MEM.RegisterRd = ID/EX.RegisterRs1 | |EX-hazard: |

. : _ Fwd from EX/MEM
1b. EX/MEM.RegisterRd = ID/EX.RegisterRs2 | | pipeline reg
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs1
2b. MEM/WB.RegisterRd = ID/EX.RegisterRs2 }

Mem-hazard: Fwd from

MEM/W

pipeline reg

Detecting when to use forwarded data

* But only if forwarding instruction will write to a register!
* EX/MEM.RegWrite, MEM/WB.RegWrite

* And only if Rd for that instruction is not x0

» EX/MEM.RegisterRd # 0, A\
MEM/WB.RegisterRd # 0

X0 is always O in RISC-V

Double Data Hazard

* Consider the sequence:

add x1,x1,x2
add x1,x1,x3
add x1,x1,x4

e Both EX- Mem-hazards occur

* use the most recent
* aka, only fwd Mem-hazard if EX hazard condition isn’t true

Load-Use Data hazard Detection

* Load-use hazard cannot be resolved using forwarding alone

Id x2, 20(x1) M ~- oM}
Cannot be
forwarded

and x4, x2, x5 IM —{ i—a: e Ib DM Reg

* Check load-use hazard using condition

* ID/EX.MemRead and ((ID/EX.RegisterRd = IF/ID.RegisterRs1) or
(ID/EX.RegisterRd = IF/ID.RegisterRs1))

e |f detected, stall and insert bubble

How to Stall the Pipeline (aka insert bubble)

* Force control values in ID/EX register to O
* EX, MEM and WB do nop (no-operation)

* Prevent update of PC and IF/ID register
* Current instruction is decoded again
* Following instruction is fetched again

e 1-cycle stall allows MEM to read data for 1d
* Can subsequently forward to EX stage

Load-Use Data Hazard

Program
execution
order

(in instructions)

Id x2, 20(x1)

and becomes nop

and x4, x2, x5

or X8, x2, x6

L add x9, x4, x2

Time (in clock cycles)

CC 1

CC 2

o

CC6 CC7

CcC4

CC3 CC5

| CRe

L_.

IM

cc s CCc 9
Stall inserted
here
Reg
.
DM Reg
|

CC 10

Datapath with Hazard Detection

If hazard is detected, set

Hazard
- detection | D/EX MemRead WB/MEM/EX controls to zero (so
— unit q . .
o e no registers/memory is written)
% ID/EX
= e EX/MEM
»|Control » \WB
© ontro M MEM/WB
o
~
—¢ > > > M
>l u >
S = . X
B Registers T\
{ S }ForwardAl ERad ™ ~IM
a1l = S u
PCly] Instruction = > > M
X
memory . ~u Data -
Ix r memory
ForwardB
IF/ID.RegisterRs1 N) . n
IF/ID.RegisterRs2 .
IF/ID.RegisterRd . Rd .
Forwarding -‘
unit -
L .

Branch Hazard
 If branch outcome is determined in MEM

Time (in clock cycles)

CcC1 CcC2 CcC3 CcC4 CC 5 CCo6 cC7 cC 8 cCco9o

Program

Instruction execution
order
(in instructions)

address

~40 beq x1, x0, 16

If x1==x0
Pc = pc+16*2 44 and x12, x2, x5

Flush 3
instructions
(set controls
to 0)

48 or x13, x6, x2

52 add x14, x2, x2

!

| 72 1d x4, 100(x7)

Reducing Branch Delay

* Add hardware to determine branch outcome earlier (e.g. ID instead of
MEM) = fewer instructions to flush

36:
40:

44 .
48
52:
56:

72:

sub
beq

and
orr
add

sub

1d

x10,
x1,

x12,
x13,
x14,
x15,

x4,
X3,

X2,
X2,
x4,
X6,

X8
16

X5
X6
X2
X7

x4, 50(x7)

// PC-relative branch How many instructions to flush

// to 40+16*2=72

if branch outcome is known in ID?

clock-1 clock-2 clock-3 clock-4 clock-5

40: beq
44: and

72:1d

v

IF ID EXE MEM WB

@@@@

EX MEM WB

Branch determined in ID and is taken

before<1> E before<2>

and x12, x2, x5 : beq x1, x3, 16 ! sub x10, x4, x8
[If branch is taken, set l —
IF/ID.Flush IF/ID.Flush AddItIOI’.\a| adder for
\ calculating target address
Hazard / i
—| detection /

unit / E
/ IDJEX

| 1
| 1
| 1
I I
/ M ”’WB EX/MEM I
. . ~lu M ~|WB MEM/WB
A%L =N
2 0 EX - M ~|wB

y
x4
X
- Y -~ Regi > > ~M
X u
5> o x87 Data X
16] f ! memory |V

] - i

7 - R

/ 10 "

| .. .\\ unit
Clock 2 | Additional comparator)
oc to determine branch outcome

Branch determined in ID and is taken

IF.Flush

Id x4, 50(x7)

Bubble (nop)

Hazard

> detection

@ | Control
ID

unit

@_ o

Y

Y

xc

Registers

YvVY Yy

Clock 3

before<1>
1
EX/MEM
1
>~|WB MEM/WB
»{\WB

M

u

Data X

memory [
Forwarding
. 2

Dynamic Branch Prediction
* Our simple 5-stage pipeline’s branch penalty is 1 bubble, but

* In deeper pipelines, branch penalty is more significant

* Solution: dynamic prediction

* Branch prediction buffer (aka branch history table)
* Indexed by recent branch instruction addresses
* Stores outcome (taken/not taken)

* To execute a branch
* Check table, expect the same outcome
e Start fetching from fall-through or target
* If wrong, flush pipeline and flip prediction

1-Bit Predictor: Shortcoming

* Inner loop branches mispredicted twice!

outer: ..

inner: ..

beq .., .., outer

= Mispredict as taken on last iteration of inner loop

= Then mispredict as not taken on first iteration of
iInner loop next time around

2-Bit Predictor

* Only change prediction on two successive mispredictions

Not taken
Taken
Not takenl ‘ Taken
Not taken
Predict not taken
Taken g

N

Calculating Branch Target (needed if branch
is predicted taken)

* Even with predictor, still need to calculate the target address
* 1-cycle penalty for a taken branch

* Branch target buffer
e Cache of target addresses

* Indexed by PC when instruction fetched
* If hit and instruction is branch predicted taken, can fetch target immediately

Summary

* Pipeline increases throughput by overlapping
execution of multiple instructions

* Pipeline hazard

 Structure (solution: add resources)
e Data (solution: forwarding)
e Control (next class)

* Pipeline stalls

