
Pipelined CPU
Jinyang Li

Based on the slides of Patterson and Hennessy

What we’ve learnt: basic 5-stage pipeline (datapath)

Pipelined Control (Simplified)

Set in EX Set in MEM

Set in WB

Pipelined Control

ALUSrc

ALUOp

MemWrite

Branch
PCSrc

MemToReg

RegWrite

Control signals derived from instruction, same as
in single-cycle implementation

Data Hazards in ALU Instructions

• Example instruction sequence:
sub x2, x1,x3
and x12,x2,x5
or x13,x6,x2
add x14,x2,x2
sd x15,100(x2)

• Solution: forwarding (aka bypassing)
• Use result after it’s computed; don’t wait for it to be stored in register

Data hazard in ALU instructions

Data hazards

Using forwarding to resolve data hazard (cycle-4)
sub x2,x1,x3and x12,x2,x5or x13,x6,x2add x14,x2,x2

Using forwarding to resolve data hazard (cycle-5)
sub x2,x1,x3and x12,x2,x5or x13,x6,x2add x14,x2,x2sd x15,100(x2)

Forwarding Paths

EX-hazard

MEM-hazard

Detecting when to use forwarded data

• Pass register numbers along pipeline
• e.g., ALU operand register numbers (in EX stage) are:

• ID/EX.RegisterRs1, ID/EX.RegisterRs2

• Data hazards when
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs1
1b. EX/MEM.RegisterRd = ID/EX.RegisterRs2
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs1
2b. MEM/WB.RegisterRd = ID/EX.RegisterRs2

EX-hazard:
Fwd from EX/MEM
pipeline reg

Mem-hazard: Fwd from
MEM/WB
pipeline reg

Detecting when to use forwarded data

•But only if forwarding instruction will write to a register!
• EX/MEM.RegWrite, MEM/WB.RegWrite

•And only if Rd for that instruction is not x0
• EX/MEM.RegisterRd ≠ 0,

MEM/WB.RegisterRd ≠ 0
X0 is always 0 in RISC-V

Double Data Hazard

• Consider the sequence:
add x1,x1,x2
add x1,x1,x3
add x1,x1,x4

• Both EX- Mem-hazards occur
• use the most recent
• aka, only fwd Mem-hazard if EX hazard condition isn’t true

MEM hazard

EX hazard

Load-Use Data hazard Detection
• Load-use hazard cannot be resolved using forwarding alone

• Check load-use hazard using condition
• ID/EX.MemRead and ((ID/EX.RegisterRd = IF/ID.RegisterRs1) or

(ID/EX.RegisterRd = IF/ID.RegisterRs1))
• If detected, stall and insert bubble

ld x2, 20(x1)

and x4, x2, x5

Cannot be
forwarded

How to Stall the Pipeline (aka insert bubble)

• Force control values in ID/EX register to 0
• EX, MEM and WB do nop (no-operation)

• Prevent update of PC and IF/ID register
• Current instruction is decoded again
• Following instruction is fetched again
• 1-cycle stall allows MEM to read data for ld

• Can subsequently forward to EX stage

Load-Use Data Hazard

Stall inserted
here

Datapath with Hazard Detection
If hazard is detected, set

WB/MEM/EX controls to zero (so
no registers/memory is written)

Branch Hazard
• If branch outcome is determined in MEM

PC

Flush 3
instructions
(set controls
to 0)

Instruction
address

If x1==x0
Pc = pc+16*2

Reducing Branch Delay
• Add hardware to determine branch outcome earlier (e.g. ID instead of

MEM) à fewer instructions to flush

36: sub x10, x4, x8
40: beq x1, x3, 16 // PC-relative branch

// to 40+16*2=72
44: and x12, x2, x5
48: orr x13, x2, x6
52: add x14, x4, x2
56: sub x15, x6, x7

...
72: ld x4, 50(x7)

How many instructions to flush
if branch outcome is known in ID?

clock-1 clock-2 clock-3

40: beq

44: and

IF ID EXE MEM WB

clock-4 clock-5

IF ID EXE MEM WB

IF ID EXE MEM WB72: ld

Branch determined in ID and is taken

Clock 2 Additional comparator
to determine branch outcome

Additional adder for
calculating target address

If branch is taken, set
IF/ID.FlushIF/ID.Flush

Branch determined in ID and is taken

Clock 3

If IF/ID.Flush is set, zero out controls so
memory/register won’t be written in
MEM and WB

Dynamic Branch Prediction
•Our simple 5-stage pipeline’s branch penalty is 1 bubble, but

• In deeper pipelines, branch penalty is more significant

• Solution: dynamic prediction
• Branch prediction buffer (aka branch history table)

• Indexed by recent branch instruction addresses
• Stores outcome (taken/not taken)

• To execute a branch
• Check table, expect the same outcome
• Start fetching from fall-through or target
• If wrong, flush pipeline and flip prediction

1-Bit Predictor: Shortcoming
• Inner loop branches mispredicted twice!

outer: …
…

inner: …
…
beq …, …, inner
…
beq …, …, outer

n Mispredict as taken on last iteration of inner loop
n Then mispredict as not taken on first iteration of

inner loop next time around

2-Bit Predictor
• Only change prediction on two successive mispredictions

Calculating Branch Target (needed if branch
is predicted taken)

• Even with predictor, still need to calculate the target address
• 1-cycle penalty for a taken branch

• Branch target buffer
• Cache of target addresses
• Indexed by PC when instruction fetched
• If hit and instruction is branch predicted taken, can fetch target immediately

Summary

• Pipeline increases throughput by overlapping
execution of multiple instructions
• Pipeline hazard

• Structure (solution: add resources)
• Data (solution: forwarding)
• Control (next class)

• Pipeline stalls

