Pipelined CPU

Jinyang Li

Based on the slides of Patterson and Hennessy



What we’ve learnt: basic 5-stage pipeline (datapath
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Pipelined Control (Simplified)
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Pipelined Control

Control signals derived from instruction, same as
/ in single-cycle implementation
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Data Hazards in ALU Instructions

* Example instruction sequence:

sub x2, x1,x3
and x12,x2,x5
or x13,Xx6,x2
add x14,x2,x?2
sd x15,100(x2)

* Solution: forwarding (aka bypassing)
* Use result after it’s computed; don’t wait for it to be stored in register



Data hazard in ALU instructions
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Using forwarding to resolve data hazard (cycle-4)
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Using forwarding to resolve data hazard (cycle-5)

Instruction fetch

sd x15,100(x2)

Instruction decode

add x14,x2,x2

|

or x13,x6,x2

Execution

and x12,x2,x5

Memory

4

o
xc =

PC

| Write-back I
sub x2,x1,x3

MEM/WB

o
xc=

IF/ID ID/IEX EX/MEM
> Add >
4 —] >Add Sum
Shift
left 1
Address _ | Read
N > | register 1 Read > >
8 data 1
2 Read Zero > —>
2 °
Instruction £ reglster% ist >ALU ALU Read
memory > eOISTErS Read > result |~ | Address data

Write data 2 o -

register Data

Write memory

" | data [
. _ | Write
g " | data
32 Imm 64
> Gen [ %

4




Forwarding Paths
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Detecting when to use forwarded data
) (6] IS0
* Pass register numbers along pipeline

e e.g., ALU operand register numbers (in EX stage) are:
* ID/EX.RegisterRs1, ID/EX.RegisterRs2 RA
- -~
* Data hazards when

1a. EX/MEM.RegisterRd = ID/EX.RegisterRs1 | |EX-hazard: |

. : _ Fwd from EX/MEM
1b. EX/MEM.RegisterRd = ID/EX.RegisterRs2 | | pipeline reg
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs1
2b. MEM/WB.RegisterRd = ID/EX.RegisterRs2 }
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Detecting when to use forwarded data

* But only if forwarding instruction will write to a register!
* EX/MEM.RegWrite, MEM/WB.RegWrite

* And only if Rd for that instruction is not x0

» EX/MEM.RegisterRd # 0, A\
MEM/WB.RegisterRd # 0

X0 is always O in RISC-V



Double Data Hazard

* Consider the sequence:

add x1,x1,x2
add x1,x1,x3
add x1,x1,x4

e Both EX- Mem-hazards occur

* use the most recent
* aka, only fwd Mem-hazard if EX hazard condition isn’t true




Load-Use Data hazard Detection

* Load-use hazard cannot be resolved using forwarding alone

Id x2, 20(x1) M ~- oM}
Cannot be
forwarded

and x4, x2, x5 IM —{ i—a: e Ib DM Reg

* Check load-use hazard using condition

* ID/EX.MemRead and ((ID/EX.RegisterRd = IF/ID.RegisterRs1) or
(ID/EX.RegisterRd = IF/ID.RegisterRs1))

e |f detected, stall and insert bubble




How to Stall the Pipeline (aka insert bubble)

* Force control values in ID/EX register to O
* EX, MEM and WB do nop (no-operation)

* Prevent update of PC and IF/ID register
* Current instruction is decoded again
* Following instruction is fetched again

e 1-cycle stall allows MEM to read data for 1d
* Can subsequently forward to EX stage



Load-Use Data Hazard
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Datapath with Hazard Detection

If hazard is detected, set
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Branch Hazard
 If branch outcome is determined in MEM
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Reducing Branch Delay

* Add hardware to determine branch outcome earlier (e.g. ID instead of
MEM) = fewer instructions to flush
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Branch determined in ID and is taken
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Branch determined in ID and is taken
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Dynamic Branch Prediction
* Our simple 5-stage pipeline’s branch penalty is 1 bubble, but

* In deeper pipelines, branch penalty is more significant

* Solution: dynamic prediction

* Branch prediction buffer (aka branch history table)
* Indexed by recent branch instruction addresses
* Stores outcome (taken/not taken)

* To execute a branch
* Check table, expect the same outcome
e Start fetching from fall-through or target
* If wrong, flush pipeline and flip prediction



1-Bit Predictor: Shortcoming

* Inner loop branches mispredicted twice!

outer: ..

inner: ..

beq .., .., outer

= Mispredict as taken on last iteration of inner loop

= Then mispredict as not taken on first iteration of
iInner loop next time around



2-Bit Predictor

* Only change prediction on two successive mispredictions

Not taken
Taken
Not takenl ‘ Taken
Not taken
Predict not taken
Taken g

N



Calculating Branch Target (needed if branch
is predicted taken)

* Even with predictor, still need to calculate the target address
* 1-cycle penalty for a taken branch

* Branch target buffer
e Cache of target addresses

* Indexed by PC when instruction fetched
* If hit and instruction is branch predicted taken, can fetch target immediately



Summary

* Pipeline increases throughput by overlapping
execution of multiple instructions

* Pipeline hazard

 Structure (solution: add resources)
e Data (solution: forwarding)
e Control (next class)

* Pipeline stalls



