
Memory hierarchy: caching
Jinyang Li

Based on Patterson and Hennessy’s slides

What we’ve learnt so far

• Single cycle RISC-V CPU design
•5 stage pipelined RISC-V CPU
• Pipelining challenges: hazards
• Must stall (bubble) to ensure correctness

• 3 types of hazards:
• Structure (To mitigate, add resources)
• Data (To mitigate, do forwarding/bypassing)
• Control (Predict/speculate)

Today’s lesson plan

•Memory hierarchy
•Caching
• Performance
• Design

Programmers want fast and unlimited memory,
but…

Processor

Memory

Memory

Memory

SRAM

DRAM

FlashMemory

Magnetic
disk

sp
ee

d

smallest

biggest

siz
e

Flip-flop

0.5-2.5ns

50-70ns

5-50𝜇s

5-20ms

< 0.5ns

$500-$1000/GB

$7-$15/GB

$0.75-$1/GB

$0.05-$0.1/GB

Integrated
on chip

fastest

slowest

How to give programmers the illusion of fast
and vast memory? Caching!

•Copy recently accessed (and nearby) items from disk
to smaller DRAM memory

•Copy more recently accessed (and nearby) items from
DRAM to smaller SRAM memory

This lecture: focus on cache memory only

Referred to as
main memory

Referred to as
cache memory

(integrated on CPU chip)Done at the granularity
of a block or line

Why caching works? Principle of locality

•Programs access a small proportion of their address
space at any time
• Temporal locality
• Items accessed recently are likely to be accessed again soon
• e.g., instructions in a loop, induction variables

• Spatial locality
• Items near those accessed recently are likely to be accessed

soon
• E.g., sequential instruction access, array data

Direct Mapped Cache
• Direct mapped: each mem block can only be cached at one location
• (Block address) modulo (#Blocks in cache)

…

00000000

11111111

00000001

11111110

…

…

Memory Addr: 1 1 1 1 0 1 1 1

00000111
00001000

11110111
11111000

Byte offset within a blockBlock address

#Blocks =TotalMem/BlockSize =28/23 Suppose cache has 8 blocks

(00000)2 % 8 = (000)2

(01000)2 % 8 = (000)2

(11000)2 % 8 = (000)2

8-byte data000

001

010

011

100

101

110

111

Direct Mapped Cache
• Direct mapped: each mem block can only be cached at one location
• (Block address) modulo (#Blocks in cache)

…

00000000

11111111

00000001

11111110
…

…

Memory Addr: 1 1 1 1 0 1 1 1

00000111
00001000

11110111
11111000

Byte offset within a blockBlock address

#Blocks =TotalMem/BlockSize =28/23 Suppose cache has 8 blocks or 8 “lines”

Use lower-order x-bits of block address
to index into the cache with 2x blocks.

8-byte data000

001

010

011

100

101

110

111

Tags and Valid Bits
•How to track which mem block is stored in a cache location?
• Store tag

•What if there is no data in a location?
• Store a valid-bit

Memory Addr: 1 1 1 1 0 1 1 1

Byte offsetBlock address

8-byte data000

001

010

011

100

101

110

111

101

Tag DataValid?

Cache indexTag

Suppose cache has 8 blocks or 8 “lines”

Cache Example
•8-blocks, 8-bytes/block, direct mapped
• Initial state

N
N
N
N
N
N
N
N

Tag DataValid?

111
110
101
100
011
010
001
000

Cache Example

N
N
N
N
N
N
N
N

Tag DataValid?

111
110
101
100
011
010
001
000

Memory addr accessed: 10110xxx

Cache Example

N
Y 10 8-bytes starting at mem[10110]
N
N
N
N
N
N

Tag DataValid?

111
110
101
100
011
010
001
000

Memory addr accessed: 11010xxx

Cache Example

N
Y 10 8-bytes starting at mem[10110]
N
N
N
Y 11 8-bytes starting at mem[11010]
N
N

Tag DataValid?

111
110
101
100
011
010
001
000

Memory addr accessed: 10110xxx

Cache Example

N
Y 10 8-bytes starting at mem[10110]
N
N
N
Y 11 8-bytes starting at mem[11010]
N
N

Tag DataValid?

111
110
101
100
011
010
001
000

Memory addr accessed: 00010xxx

Cache Example

N
Y 10 8-bytes starting at mem[10110]
N
N
N
Y 00 8-bytes starting at mem[00010]
N
N

Tag DataValid?

111
110
101
100
011
010
001
000

Another example: Larger Block Size
•64-bit memory address
•64 cache blocks, 16 bytes/block

Tag Index Offset
03491063

4 bits6 bits22 bits

??????

Block Size Considerations

• Larger blocks should reduce miss rate
• Due to spatial locality

•But in a fixed-sized cache
• Larger blocks Þ fewer of them
• More competition Þ increased miss rate

• Larger blocks Þ pollution
• Larger miss penalty
• Can override benefit of reduced miss rate

Hardware of direct mapped cache

Cache Misses

•On cache hit, CPU proceeds normally
•On cache miss
• Stall the CPU pipeline
• Fetch block from next level of hierarchy
• Instruction cache miss
• Restart instruction fetch

• Data cache miss
• Complete data access

Very expensive:
usually 20~100

cycles

Write-Through vs write-back

•Write-through: On write hit, update memory upon write
•Write-back: On write hit, update cache only
• Keep track of whether a block in cache is dirty
•When a dirty block is replaced, write it back to memory

Reducing cache miss: Associative Cache
• Fully associative
• Allow a given block to go in any cache entry
• Require all entries to be searched at once
• Need a comparator per cache entry (expensive)

• n-way set associative
• Divide cache into sets each of which contains n entries
• Block number determines which set
• (Block number) modulo (#Sets in cache)

• Fully-associative within the set: search n entries of a set at once
• n comparators (less expensive)

Associative Cache Example

Cache locations of a memory block with block address 12

Associativity Example

•2-way set associative
Block

address
Cache
index

Hit/miss Cache content after access
Set 0 Set 1

0 0 miss Mem[0]
8 0 miss Mem[0] Mem[8]
0 0 hit Mem[0] Mem[8]
6 0 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]

Block
address

Cache
index

Hit/miss Cache content after access
0 1 2 3

0 0 miss Mem[0]
8 0 miss Mem[8]
0 0 miss Mem[0]
6 2 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]

•Direct mapped Block access sequence: 0, 8, 0, 6, 8

How Much Associativity

• Increased associativity decreases miss rate
• But with diminishing returns

• Simulation of a system with 64KB D-cache, 16-word
blocks, SPEC2000 benchmark
• 1-way: 10.3%
• 2-way: 8.6%
• 4-way: 8.3%
• 8-way: 8.1%

4-way set Associative Cache Organization

Replacement Policy

•Direct mapped: no choice
• Set associative
• Prefer non-valid entry, if there is one
• Otherwise, choose among entries in the set

• Least-recently used (LRU)
• Choose the one unused for the longest time
• Hardware implementation: simple for 2-way, manageable for 4-

way, too hard beyond that

Multilevel Caches

•Primary cache attached to CPU
• Small, but fast

• Level-2 cache services misses from primary cache
• Larger, slower, but still faster than main memory

•Main memory services L-2 cache misses
•High-end systems include L-3 cache

Software Optimization via Blocking

•Goal: maximize accesses to data before it is replaced
• Example: Naïve matrix multiplication (DGEMM)

for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {

double cij = 0;
for(int k = 0; k < n; k++)
cij += A[i+k*n] * B[k+j*n];

C[i+j*n] = cij;
}

}

𝐶",$ = #
%&'

()*

𝐴",% ∗ 𝐵%,$

DGEMM access pattern
older accesses

new accesses

C A B

Cache hit?
Cache hit?

Blocked DGEMM
#define BLOCKSIZE 32
void do_block (int n, int si, int sj, int sk, double *A, double*B, double *C)
{
for (int i = si; i < si+BLOCKSIZE; ++i)
for (int j = sj; j < sj+BLOCKSIZE; ++j)
{
double s = 0;
for(int k = sk; k < sk+BLOCKSIZE; k++)

s += A[i+k*n] * B[k+j*n];
C[i+j*n] += s; //accumulate s to C[i][j] */
}

}

void dgemm (int n, double* A, double* B, double* C)
{
for (int sj = 0; sj < n; sj += BLOCKSIZE)

for (int si = 0; si < n; si += BLOCKSIZE)
for (int sk = 0; sk < n; sk += BLOCKSIZE)
do_block(n, si, sj, sk, A, B, C);

}

Blocked DGEMM Access Pattern

Unoptimized Blocked

C A B

Summary

•Memory hierarchy
•Caching works due to principles of locality
•Direct mapped vs. set-associate cache
• Software optimization via blocking

