Memory hierarchy: caching
Jinyang Li

Based on Patterson and Hennessy’s slides

What we’ve learnt so far

*Single cyc
* 5 stage pi

e RISC-V CPU design

nelined RISC-V CPU

* Pipelining challenges: hazards
e Must stall (bubble) to ensure correctness

* 3 types of hazards:
e Structure (To mitigate, add resources)
 Data (To mitigate, do forwarding/bypassing)
* Control (Predict/speculate)

Today’s lesson plan

* Memory hierarchy
* Caching

 Performance
* Design

Programmers want fast and unlimited memory,
but...

Flip-flop <0.5ns fastest

smallest
Memory SRAM Integrated 0.5-2.5ns $500-$1000/GB
on chip

g o)
Memory DRAM 50-70ns | O $7-515/GB Y

o ‘»

(0p]

Flash S'SOHS S0.75-$1/GB
Magnetic
5-20ms = Slowest $0.05-50.1/GB

disk biggest

How to give programmers the illusion of fast
and vast memory? Caching!

* Copy recently accessed (and nearby) items from disk
to smaller DRAM memory

Referred to as
main memory

* Copy more recently accessed (and nearby) items from
%AM to smaller SRAM memory

Referred to as

cache memory

Done at the gr.anularlty (integrated on CPU chip)
of a block or line

This lecture: focus on cache memory only

Why caching works? Principle of locality

* Programs access a small proportion of their address
space at any time

* Temporal locality

* [tems accessed recently are likely to be accessed again soon
e e.g., instructions in a loop, induction variables

* Spatial locality

* [tems near those accessed recently are likely to be accessed
soon

* E.g., sequential instruction access, array data

Direct Mapped Cache

* Direct mapped: each mem block can only be cached at one location
* (Block address) modulo (#Blocks in cache)

11111111 o
11111110 Block address Byte offset within a block

A
(\
ﬂﬁcl)gcl)cl) Memory Addr: n 111

110

101
100
011
010

00001000
00000111

001
00000001 (00000), % 8 = (000), By G byte data
00000000

S he has 8 block
#Blocks =TotalMem/BlockSize =28/23 UPPOSE cathe nds 0

Direct Mapped Cache

* Direct mapped: each mem block can only be cached at one location
* (Block address) modulo (#Blocks in cache)

11111111 Block address Byte offset within a block
A
(Wate
ﬂﬁégcl)(l) Memory Addr: u

e 10 [
101 [
100 [
Use lower-order x-bits of block address 011 -
00001000 to index into the cache with 2* blocks. 010 -
00000111
o1 [
00000000

#Blocks =TotalMem/BlockSize =28/23 Suppose cache has 8 blocks or 8 “lines”

Tags and Valid Bits

* How to track which mem block is stored in a cache location?
* Store tag

]]] . Valid? Tag Data
* What if there is no data in a location? ;;
* Store a valid-bit > 110 [
7 101
Block address Byte offset 100
A :":

(Yate' 011
Memory Addr: nnnnn T
~ | 001

Tag chhe index . 000 8-byte data

Suppose cache has 8 blocks or 8 “lines”

Cache Example

* 8-blocks, 8-bytes/block, direct mapped
* Initial state

Valid? Tag Data

111 |N
110
101
100
011
010
001
000

Z | Z2|Z2|Z2|Z2|Z2|Z

Cache Example

Memory addr accessed: 10110xxx

Valid? Tag Data

111 |N
110
101
100
011
010
001
000

Z | Z2|Z2|Z2|Z2|Z2|Z

Cache Example

Memory addr accessed: 11010xxx

Valid? Tag Data

111 |N

10 |Y 10 8-bytes starting at mem[10110]
101 | N
100 | N
011 [N
010 [N
001 |N
000 | N

Cache Example

Memory addr accessed: 10110xxx

Valid? Tag Data

111 |N

10 |Y 10 8-bytes starting at mem[10110]
101 | N
100 | N
011 [N
010 |vy 11 8-bytes starting at mem[11010]
001 |N
000 | N

Cache Example

Memory addr accessed: 00010xxx

Valid? Tag Data

111 |N

10 |Y 10 8-bytes starting at mem[10110]
101 | N
100 | N
011 [N
010 |vy 11 8-bytes starting at mem[11010]
001 |N
000 | N

Cache Example

111

110
101
100
011

010
001
000

Valid? Tag Data

N

Y 10 8-bytes starting at mem[10110]
N

N

N

Y 00 8-bytes starting at mem[00010]
N

N

Another example: Larger Block Size

* 64-bit memory address
* 64 cache blocks, 16 bytes/block

63 10 9 4 3 0
Tag Index | Offset
\ Y B -

?? o ??

22 bits 6 bits 4 bits

Block Size Considerations

* Larger blocks should reduce miss rate
* Due to spatial locality

e But in a fixed-sized cache

* Larger blocks = fewer of them
* More competition = increased miss rate

* Larger blocks = pollution

e Larger miss penalty
e Can override benefit of reduced miss rate

Hardware of direct mapped cache

Hit

Address (showing bit positions)

63 62 - 131211 ----2 10
Byte
offset
52 10
N N
Tag
Index
Index Valid Tag Data
0]
1
2
@ ® ®
1021
1022
1023
452 4,32

)

Data

Cache Misses

* On cache hit, CPU proceeds normally Very expensive:
usually 20~100

* On cache miss
e Stall the CPU pipeline
* Fetch block from next level of hierarchy

* Instruction cache miss
e Restart instruction fetch

e Data cache miss
 Complete data access

cycles

Write-Through vs write-back

* Write-through: On write hit, update memory upon write

* Write-back: On write hit, update cache only

* Keep track of whether a block in cache is dirty
* When a dirty block is replaced, write it back to memory

Reducing cache miss: Associative Cache

* Fully associative
* Allow a given block to go in any cache entry

* Require all entries to be searched at once
* Need a comparator per cache entry (expensive)

* n-way set associative

e Divide cache into sets each of which contains n entries

* Block number determines which set
* (Block number) modulo (#Sets in cache)

* Fully-associative within the set: search n entries of a set at once
* n comparators (less expensive)

Associative Cache Example

Direct mapped Set associative Fully associative
Block# 01234567 Set# 0 1 2 3
Data Data Data
1 1 1
Ta Ta Ta

soch T s T s TTTTTTT]

Cache locations of a memory block with block address 12

Associativity Example

Block access sequence: 0, 8,0, 6, 8

* Direct mapped
Block Cache Hit/miss Cache content after access
address index 0 1 2
0 0 miss Mem|[O0]
8 0 miss Mem|[8]
0 0 miss Mem|[0]
6 2 miss Mem[O] Mem([6]
8 0 miss Mem|[8] Mem|[6]

* 2-way set associative

Block Cache Hit/miss Cache content after access
address index Set 0 Set 1
0 0 miss Mem|[O0]
8 0 miss Mem][0] Mem|[8]
0 0 hit Mem([0] Mem|[8]
6 0 miss Mem][0] Mem|[6]
8 0 miss Mem|[8] Mem|[6]

How Much Associativity

* Increased associativity decreases miss rate
* But with diminishing returns

e Simulation of a system with 64KB D-cache, 16-word
blocks, SPEC2000 benchmark
* 1-way: 10.3%
e 2-way: 8.6%
* 4-way: 8.3%
* 8-way: 8.1%

4-way set Associative Cache Organization

Address
3130---12111098---3210

422 48
Tag
Index
Index V Tag Data V Tag Data V Tag Data V Tag Data
0
1
2
Q

253
254
255

J22 {32

oLyl ¢

L
t; é—toJ muItipIex@

Hit Data

Replacement Policy

* Direct mapped: no choice

* Set associative
* Prefer non-valid entry, if there is one
* Otherwise, choose among entries in the set

* Least-recently used (LRU)

* Choose the one unused for the longest time

* Hardware implementation: simple for 2-way, manageable for 4-
way, too hard beyond that

Multilevel Caches

* Primary cache attached to CPU
* Small, but fast

* Level-2 cache services misses from primary cache
* Larger, slower, but still faster than main memory

* Main memory services L-2 cache misses
* High-end systems include L-3 cache

Software Optimization via Blocking

* Goal: maximize accesses to data before it is replaced
* Example: Naive matrix multiplication (DGEMM)

for (int 1 =0; 1 < n; i++) {
for (int j = 0; j < n; j++) {

n—1
Cirj = EAi,k * Bk,j double cij = 0;
k=0 for(int k = 0; k < n; k++)
cij += A[i+k*n] * B[k+j*n];

C[i+j*n] = cij;
}
}

DGEMM access pattern

older accesses .
Cache hit?

new accesses /
K

a A W N =+ O

a ~r W DM = O

Cache hit?

Blocked DGEMM

#define BLOCKSIZE 32
void do_block (int n, int si, int sj, int sk, double *A, double*B, double *C)
{
for (int i = si; 1 < si+BLOCKSIZE; ++i)
for (int j = sj; j < sj+BLOCKSIZE; ++j)
{
double s = 0;
for(int k = sk; k < sk+BLOCKSIZE; k++)
s += A[i+k*n] * B[k+j*n];
C[i+j*n] += s; //accumulate s to C[i][]j] */
}
}

void dgemm (int n, double* A, double* B, double* C)
{
for (int sj = 0; sj < n; sj += BLOCKSIZE)
for (int si = @; si < n; si += BLOCKSIZE)
for (int sk = @; sk < n; sk += BLOCKSIZE)
do_block(n, si, sj, sk, A, B, C);

Block_ed DGEMM Access Pattern_

0 1 2 3 45 Y 0 1 2 3 4 5 % g 3
0 0
NN [1
i2 -
3 3
4 4
5 5

C A B

GFLOPS

Unoptimized Blocked

Summary

* Memory hierarchy
* Caching works due to principles of locality
* Direct mapped vs. set-associate cache

* Software optimization via blocking

