
Sequential Logic
Jinyang Li

What we’ve learnt so far
• Combinatorial logic
• E.g. Multiplexors (Mux), Decoders
• Two ways of building a CL

• Truth table à sum of products circuits
• ROM

• ALU
• Compute all operations (+, OR, AND, NOR), multiplexer picks the result
• Building a 64-bit adder

• Ripple carry chains together 1-bit adders
• Carry lookahead

Today’s lesson plan

• Sequential circuit: Memory (state) elements
• Sequential circuit: Finite State Machine

Two types of logic circuits

• Combinatorial circuit
• PLA: Truth table à sum of products PLA circuit
• ROM (read-only memory): Addresses (inputs)à contents (outputs)

• Sequential circuit
• output is dependent on both input and state (memory elements)

Today’s lesson

Sequential logic requires clock
When should the
state element be

updated?

Clock signal

Clock frequence = 1/clock_periodClock
period

Clock
period

State
element

Clocks

• Edge-triggered clocking: state content only changes on active clock edge

Sequential logic requires clock

State
element

State changed to 1

Clock signal

Clock
period

Clock frequence = 1/clock_periodClock
period

State changed to 0 State changed to 1

Sequential logic requires clock

Combinatorial logicState
element 1

State
element 2

Clock cycle
Valid content is
read from state

element 1
Valid content is

written into state
element 2

Delay of CL must be less than one clock cycle

Sequential logic requires clock

Combinatorial logicState
element

Clock cycle
Valid content is
read from state

element
Valid content is

written into state
element

Memory (state) elements: unlocked S-R Latch
NOR

Stored
content

Complement
of stored
content

S (set) R (reset)
0 0 keeps

existing
value

1 0 Q=1

0 1 Q=0

1 1 Invalid

Clock

State

Input

Memory element: clocked D latch
• D latch: state is changed as long as clock is asserted

Clock
signal

R

S Latch is open; input
is written to state

Latch is closed; state
remains unchanged

Memory element: Flip-flop
• Flip-flop: state is changed only on (rising or falling) clock edge

D-flip-flop with a
falling-edge trigger

Q1

1st latch is open Q1=1
2nd latch is open Q=Q1
1st latch is closed

Finite State Machine

• Combinatorial logic à truth table
• Sequential logic à F(inite) S(tate) M(achine)
• Input and current state determine next state and outputs

Finite State Machine

New state is
computed every

clock cycle Combinatorial
logic

FSM example: traffic light control

State:
NSgreen: traffic light is green in N-S (red in E-W)
EWgreen: traffic light is green in E-W (red in N-S)

Inputs:
NScar: car detected in N-S
EWcar: car detected in E-W

Outputs:
NSlite: 1 if state=NSgreen
EWlite: 1 if state=EWgreen

How many bits needed to
represent state values?

FSM example: traffic light control

NSgreen EWgreen

NScarEWcar

NScar

EWcar

Clock cycles once every 30 secondsClock speed?

FSM example: traffic light
• FSM is determined by NextState function and Output function

NSg EWg

NScarEWcar

NScar

EWcar

FSM example: traffic light
• FSM is determined by NextState function and Output function

0 (Nsgreen)

0 (Nsgreen)

0 (Nsgreen)

0 (Nsgreen)

1 (Ewgreen)

1 (Ewgreen)

1 (Ewgreen)

1 (Ewgreen)

0 (Nsgreen)

1 (Ewgreen)

0 (Nsgreen)

1 (Ewgreen)

1 (Ewgreen)

1 (Ewgreen)

0 (Nsgreen)

0 (Nsgreen)

𝑁𝑒𝑥𝑡 = 𝐶𝑢𝑟𝑟) 𝑁𝑆𝑐𝑎𝑟) 𝐸𝑊𝑐𝑎𝑟
+𝐶𝑢𝑟𝑟) 𝑁𝑆𝑐𝑎𝑟) 𝐸𝑊𝑐𝑎𝑟

+C𝑢𝑟𝑟) 𝑁𝑆𝑐𝑎𝑟) 𝐸𝑊𝑐𝑎𝑟
+ 𝐶𝑢𝑟𝑟) 𝑁𝑆𝑐𝑎𝑟) 𝐸𝑊𝐶𝑎𝑟

= 𝐶𝑢𝑟𝑟) 𝐸𝑊𝑐𝑎𝑟 + 𝐶𝑢𝑟𝑟) 𝑁𝑆𝑐𝑎𝑟

Current State

FSM traffic light: next state function

State
element

EWcar

NScar

Next

FSM traffic light: output function

0
1

NSLite = 𝐶𝑢𝑟𝑟
EWLite = 𝐶𝑢𝑟𝑟

FSM traffic light: output function

State
register NSLite

EWLite

Another FSM example: Electronic eye

FSM

left middle right

Lights are lit from left to right, then right to left and so on

State transition diagram?

Memory element: Register file

• Register file: a set of registers that can be read and written

😕Why reading two registers at a time?

Register file:
Read

Clock signal is assumed and not drawn

Register file:
Write

Clock signal is assumed and not drawn

Register file

• What if the same register is read and written in the same clock cycle?
• Return register value written in an earlier cycle
• Write of new value occurs on the clock edge (at the end of the current cycle)

• Some register file can read value currently being written
• Requires additional logic in the register file

Summary

• Memory (state) elements
• Requires a clock signal to know when to update state value
• Unclocked S-R latch à Clocked D latch à Flip-flop

• Sequential logic
• Finite state machine
• Decompose into two CL functions

• Next state function: compute next state value based on current state value and inputs
• Output function: compute output based on current state value and inputs

Happy Thanksgiving!

Stay safe!

