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What we’ve learnt so far

* Combinatorial logic
* E.g. Multiplexors (Mux), Decoders

e Two ways of building a CL

* Truth table = sum of products circuits
* ROM

* ALU
 Compute all operations (+, OR, AND, NOR), multiplexer picks the result

* Building a 64-bit adder

* Ripple carry chains together 1-bit adders
e Carry lookahead



Today’s lesson plan

* Sequential circuit: Memory (state) elements
* Sequential circuit: Finite State Machine



Two types of logic circuits

 Combinatorial circuit
e PLA: Truth table = sum of products PLA circuit
* ROM (read-only memory): Addresses (inputs)—> contents (outputs)

e Sequential circuit
e output is dependent on both input and state (memory elements)
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Sequential logic requires clock
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Clocks

* Edge-triggered clocking: state content only changes on active clock edge

Falling edge

Clock period Rising edge



Sequential logic requires clock
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Sequential logic requires clock
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Sequential logic requires clock
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Memory (state) elements: unlocked S-R Latch
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Memory element: clocked D latch

* D latch: state is changed as Iong as clock is asserted
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Memory element: Flip-flop

* Flip-flop: state is changed only on (rising or falling) clock edge
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Finite State Machine

* Combinatorial logic = truth table

* Sequential logic =2 F(inite) S(tate) M(achine)
* Input and current state determine next state and outputs



Finite State Machine
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FSM example: traffic light control

How many bits needed to
represent state values?
State: P

@ NSgreen: traffic light is green in N-S (red in E-W)
EWgreen: traffic light is green in E-W (red in N-S,

@ {l Inputs:

NScar: car detected in N-S
a EWocar: car detected in E-W

Outputs:
NSlite: 1 if state=NSgreen
EWlite: 1 if state=EWgreen



FSM example: traffic light control

NScar
NSgreen EWgreen
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Clock speed?  Clock cycles once every 30 seconds




FSM example: traffic light

* FSM is determined by NextState function and Output function

I T T

NSgreen 0 0 NSgreen
NSgreen 0 1 EWgreen
NSgreen 1 0 NSgreen EWear NScar
NSgreen 1 1 EWgreen
EWgreen 0 0 EWgreen
EWgreen 0 1 EWgreen
EWgreen 1 0 NSgreen
EWgreen 1 1 NSgreen




FSM example: traffic light

* FSM is determined by NextState function and Output function

curentotate | NSear | EWear | Nextstate

O (Nsgreen)

0 0 O (Nsgreen) Next = Cﬂ- NScar - EWcar
0 (Nsgreen) 0 1 1 (Ewgreen) +Curr - NScar - EWcar
0 (Nsgreen) 1 0 0 (Nsgreen) +Curr - NScar - EWcar

+ Curr - NScar - EWCar

0 (Nsgreen) 1 1 1 (Ewgreen)
1 (Ewgreen) 0 0 1 (Ewgreen)
1 (Ewgreen) 0 1 1 (Ewgreen) |
1 (Ewgreen) 1 0 O (Nsgreen) |
1 (Ewgreen) 1 1 O (Nsgreen) |




FSM traffic light: next state function

Next = Curr - EWcar + Curr - NScar
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FSM traffic light: output function
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FSM traffic light: output function
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Another FSM example: Electronic eye

State transition diagram?
Ieft/ middle \right

@ O O

Lights are lit from left to right, then right to left and so on




Memory element: Register file

* Register file: a set of registers that can be read and written

Read register
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Register file:

Read

Clock signal is assumed and not drawn
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Register file:

Write

Clock signal is assumed and not drawn
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Register file

* What if the same register is read and written in the same clock cycle?
* Return register value written in an earlier cycle
* Write of new value occurs on the clock edge (at the end of the current cycle)

* Some register file can read value currently being written
* Requires additional logic in the register file



Summary

 Memory (state) elements

* Requires a clock signal to know when to update state value
* Unclocked S-R latch = Clocked D latch = Flip-flop

* Sequential logic
* Finite state machine

 Decompose into two CL functions
* Next state function: compute next state value based on current state value and inputs
e QOutput function: compute output based on current state value and inputs



Happy Thanksgiving!




