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What we’ve learnt so far
• Combinatorial logic
• E.g. Multiplexors (Mux), Decoders
• Two ways of building a CL

• Truth table à sum of products circuits
• ROM

• ALU
• Compute all operations (+, OR, AND, NOR), multiplexer picks the result
• Building a 64-bit adder

• Ripple carry chains together 1-bit adders
• Carry lookahead



Today’s lesson plan

• Sequential circuit: Memory (state) elements
• Sequential circuit: Finite State Machine



Two types of logic circuits

• Combinatorial circuit 
• PLA: Truth table à sum of products PLA circuit
• ROM (read-only memory): Addresses (inputs)à contents (outputs)

• Sequential circuit 
• output is dependent on both input and state (memory elements)

Today’s lesson



Sequential logic requires clock
When should the 
state element be 

updated?

Clock signal
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Clocks

• Edge-triggered clocking: state content only changes on active clock edge



Sequential logic requires clock

State 
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State changed to 1

Clock signal

Clock 
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Sequential logic requires clock

Combinatorial logicState 
element 1

State 
element 2

Clock cycle
Valid content is 
read from state 

element 1
Valid content is 

written into state 
element 2

Delay of CL must be less than one clock cycle



Sequential logic requires clock
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Memory (state) elements: unlocked S-R Latch
NOR

Stored 
content

Complement 
of stored 
content

S (set) R (reset)
0 0 keeps 

existing 
value

1 0 Q=1

0 1 Q=0

1 1 Invalid



Clock

State

Input

Memory element: clocked D latch
• D latch: state is changed as long as clock is asserted

Clock 
signal

R

S Latch is open; input 
is written to state

Latch is closed; state 
remains unchanged



Memory element: Flip-flop
• Flip-flop: state is changed only on (rising or falling) clock edge

D-flip-flop with a 
falling-edge trigger

Q1

1st latch is open Q1=1
2nd latch is open Q=Q1
1st latch is closed 



Finite State Machine

• Combinatorial logic à truth table
• Sequential logic à F(inite) S(tate) M(achine)
• Input and current state determine next state and outputs



Finite State Machine

New state is 
computed every 

clock cycle Combinatorial 
logic



FSM example: traffic light control

State:
NSgreen: traffic light is green in N-S (red in E-W)
EWgreen: traffic light is green in E-W (red in N-S)

Inputs:
NScar: car detected in N-S 
EWcar: car detected in E-W

Outputs:
NSlite: 1 if state=NSgreen
EWlite: 1 if state=EWgreen

How many bits needed to 
represent state values?



FSM example: traffic light control

NSgreen EWgreen

NScarEWcar

NScar

EWcar

Clock cycles once every 30 secondsClock speed?



FSM example: traffic light
• FSM is determined by NextState function and Output function

NSg EWg

NScarEWcar

NScar

EWcar



FSM example: traffic light
• FSM is determined by NextState function and Output function
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FSM traffic light: next state function

State 
element

EWcar

NScar

Next



FSM traffic light: output function

0
1

NSLite = 𝐶𝑢𝑟𝑟
EWLite = 𝐶𝑢𝑟𝑟



FSM traffic light: output function

State 
register NSLite

EWLite



Another FSM example: Electronic eye

FSM

left middle right

Lights are lit from left to right, then right to left and so on

State transition diagram?



Memory element: Register file

• Register file: a set of registers that can be read and written

😕Why reading two registers at a time?



Register file: 
Read

Clock signal is assumed and not drawn 



Register file: 
Write

Clock signal is assumed and not drawn 



Register file

• What if the same register is read and written in the same clock cycle?
• Return register value written in an earlier cycle
• Write of new value occurs on the clock edge (at the end of the current cycle)

• Some register file can read  value currently being written
• Requires additional logic in the register file



Summary

• Memory (state) elements
• Requires a clock signal to know when to update state value
• Unclocked S-R latch à Clocked D latch à Flip-flop

• Sequential logic 
• Finite state machine
• Decompose into two CL functions

• Next state function: compute next state value based on current state value and inputs
• Output function: compute output based on current state value and inputs



Happy Thanksgiving!

Stay safe!


