Sequential Logic
Jinyang Li

What we’ve learnt so far

* Combinatorial logic
* E.g. Multiplexors (Mux), Decoders

e Two ways of building a CL

* Truth table = sum of products circuits
* ROM

* ALU
 Compute all operations (+, OR, AND, NOR), multiplexer picks the result

* Building a 64-bit adder

* Ripple carry chains together 1-bit adders
e Carry lookahead

Today’s lesson plan

* Sequential circuit: Memory (state) elements
* Sequential circuit: Finite State Machine

Two types of logic circuits

 Combinatorial circuit
e PLA: Truth table = sum of products PLA circuit
* ROM (read-only memory): Addresses (inputs)—> contents (outputs)

e Sequential circuit
e output is dependent on both input and state (memory elements)

-

Today’s lesson

Sequential logic requires clock

~
When should the

state element be

updated?
m)
| State
Clock signal ﬂ element
* <+ > < >
Clock ~ Clock Clock frequence = 1/clock_period

period period

Clocks

* Edge-triggered clocking: state content only changes on active clock edge

Falling edge

Clock period Rising edge

Sequential logic requires clock

{State changedto 1 | | State changedto OJ State changed to 1 }

\
State
| element
Clock signal
< > < >
Clock Clock Clock frequence = 1/clock_period

period period

Sequential logic requires clock

State
element 1

Clock cycle

Combinatorial logic

State
element 2

Delay of CL must be less than one clock cycle

=

"

Valid content is
read from state
element 1

)

/

-

_

Valid content is
written into state
element 2

J

Sequential logic requires clock

State
element

Combinatorial logic

Clock cycle

Valid content is
read from state
element

)

/

-

_

Valid content is
written into state
element

J

Memory (state) elements: unlocked S-R Latch
/[NOR |
R <[Stored J

Q content

_ Complement
of stored
S content

Memory element: clocked D latch

* D latch: state is changed as Iong as clock is asserted

CIock
S|gnal

Input

Clock

State

U k

Latch is open; input
is written to state

Latch is closed; state
remains unchanged

|

—L__—r

Q

Memory element: Flip-flop

* Flip-flop: state is changed only on (rising or falling) clock edge

5 el Ql D Q|
D D D @
latch latch D
C C g <
D-flip-flop with a
C Dc falling-edge trigger
) |

. | -
[1st latch is op%
Q

2nd latch is open Q=Q1
1st latch is closed

Finite State Machine

* Combinatorial logic = truth table

* Sequential logic =2 F(inite) S(tate) M(achine)
* Input and current state determine next state and outputs

Finite State Machine

-

computed every

New state is

clock cycle

—»| Current state

Next
state

|

Clock

Next-state
L 2 .
N function
\

| Combinatorial
logic

Inputs

» Qutputs

FSM example: traffic light control

How many bits needed to
represent state values?
State: P

@ NSgreen: traffic light is green in N-S (red in E-W)
EWgreen: traffic light is green in E-W (red in N-S,

@ {l Inputs:

NScar: car detected in N-S
a EWocar: car detected in E-W

Outputs:
NSlite: 1 if state=NSgreen
EWlite: 1 if state=EWgreen

FSM example: traffic light control

NScar
NSgreen EWgreen
>
X\\/// EWcar ‘lll”

EWcar NScar

Clock speed? Clock cycles once every 30 seconds

FSM example: traffic light

* FSM is determined by NextState function and Output function

I T T

NSgreen 0 0 NSgreen
NSgreen 0 1 EWgreen
NSgreen 1 0 NSgreen EWear NScar
NSgreen 1 1 EWgreen
EWgreen 0 0 EWgreen
EWgreen 0 1 EWgreen
EWgreen 1 0 NSgreen
EWgreen 1 1 NSgreen

FSM example: traffic light

* FSM is determined by NextState function and Output function

curentotate | NSear | EWear | Nextstate

O (Nsgreen)

0 0 O (Nsgreen) Next = Cﬂ- NScar - EWcar
0 (Nsgreen) 0 1 1 (Ewgreen) +Curr - NScar - EWcar
0 (Nsgreen) 1 0 0 (Nsgreen) +Curr - NScar - EWcar

+ Curr - NScar - EWCar

0 (Nsgreen) 1 1 1 (Ewgreen)
1 (Ewgreen) 0 0 1 (Ewgreen)
1 (Ewgreen) 0 1 1 (Ewgreen) |
1 (Ewgreen) 1 0 O (Nsgreen) |
1 (Ewgreen) 1 1 O (Nsgreen) |

FSM traffic light: next state function

Next = Curr - EWcar + Curr - NScar

| State

element

e

FSM traffic light: output function

P ——
___ Nslite | EWlite |

0 NSgreen 1 0
1 EWgreen 0 1
NSLite = Curr

EWLite = Curr

FSM traffic light: output function

>tate ¢ {>® . NSLite
register

» EWLite

Another FSM example: Electronic eye

State transition diagram?
Ieft/ middle \right

@ O O

Lights are lit from left to right, then right to left and so on

Memory element: Register file

* Register file: a set of registers that can be read and written

Read register
'\
number 1 Read
-
_| Read register data 1
number 2 _ _ _
: . ©Why reading two registers at a time?
. Register file
Write Read
- . >
register data 2
. Write
data

Register file:

Read

Clock signal is assumed and not drawn

Read register
number 1

Read register
number 2

Register 0 —&»F

Register 1 * >
1 >

Registern—-2|—¢ >
Registern—1}¢ -
>

L

» Read data 1

» Read data 2

Register file:

Write

Clock signal is assumed and not drawn

Write

Register number —

Register data

—

n-to-2n
decoder

n-2

n-—1

Register 0

Register 1

Register n—-2

T T

Register n—1

Register file

* What if the same register is read and written in the same clock cycle?
* Return register value written in an earlier cycle
* Write of new value occurs on the clock edge (at the end of the current cycle)

* Some register file can read value currently being written
* Requires additional logic in the register file

Summary

 Memory (state) elements

* Requires a clock signal to know when to update state value
* Unclocked S-R latch = Clocked D latch = Flip-flop

* Sequential logic
* Finite state machine

 Decompose into two CL functions
* Next state function: compute next state value based on current state value and inputs
e QOutput function: compute output based on current state value and inputs

Happy Thanksgiving!

