Basic/Pipelined processor
Implementation

Jinyang Li

Today’s lesson plan

 Basic single-cycle CPU design, continued
* Pipelining idea and challenges

Recall our basic RISC-V CPU: datapath w/ control

:>Add

4 —»
Instruction [6-0]
Instruction [19-15]
Read L 4
address

Instruction
[31-0]

Instruction
memory

» Control

Control derived
from

instruction type

Branch

7

\ MemRead

- xc2 ©

MemtoReg

ALUOp

Mem\WWrite

/ ALUSrc

RegWrite

Instruction [24-20]

Instruction [11-7]

Instruction [31-0]

\

Instruction [30,14-12]

Read

register 1 poag
Read data 1
register 2

Write Read
register data?2
Write

data Registers

Zero

>ALU ALU
result

Read

Address data

Write
data

Data
memory

Oxc2-

R-Type Inst

add x5, x6, X7

funct?7

rs2 rs1i

funct3

rd

opcode

Add

Read
address

Instruction
[31-0]

Instruction
memory

Instruction [6-0]

Instruction [19-15]

» Control

Branch

Add Sumf——

Shift
left 1 _—

\ MemRead

///
_-
- ,_

- xc2 ©

MemtoReg

ALUOD

MemWrite

/ ALUSrc

RegWrite

Read

Instruction [24-20]

register 1 Reaqd

» Read data 1

Instruction [11-7]

register 2
Write Read

™| register data 2

Write

Instruction [31-0]

" | data Registers

2 (1) s

y
-‘x:g&

Address

Write

" | data

Read
data

Oxec=2-

Data
memory

&

Instruction [30,14-12]

BEQ Instruction

beq x5,

X6, 100

| PC &>

> Add

Instruction [6—0]

Read
address

Instruction
[31-0]

Instruction
memory

»{ Control

Instruction [19-15]

Instruction [24-20]

Instruction [11-7]

Instruction [31-0]

rs2 rsi funct3 opcode
>Add Sum

Branch |
\ MemRead

MemtoReg

ALUOPp

MemWrite
/ ALUSrc

RegWrite
Read
register 1 poog
Read data 1 o -
register 2 >ALU ero
Write Read ~(0 A]‘LlJt - Addr(:s;ste"id {1
register data 2 M resy ata “L/l'

u
Write ® 1x >
data i
Registers | write Data
™ Jata Mmemory

64

Instruction [30,14-12]

1d

x5, 40(x6)

LOad |nSt immediate rs1 funct3 rd opcode
> Add o —
4 — B Add Sum
Shift) -
left 1 _—
Branch w/ - I |
\ MemRead
Instruction [6—0] MemtoReg
> Control ALUOD
MemWrite
/ ALUSrc
RegWrite
Instruction [19-15]
pC R(i?d T - 'Bez?gter1 Read
address Instruction [24-20] .. dataf -
- eac
Instruction register 2 >ALU Zero
[31-0] Instruction [11-7] Write Read ~ (0 . QSILL[{ Address Rdeaatg 1
Instruction ™| register dala 2 M M
memory u X
_ | Write 1x d
" | data i
Registers | write Data
dats Memory

Instruction [31-0]

Instruction [30,14-12]

Basic CPU must finish an instruction in one clock cycle
- use a “slow” clock

Q —

Branch .

\ MemRead

)

Instruction [6-0] MemtoReg
= Control ALUOD
MemWrite
/ ALUSrc
RegWrite

Instruction [19-15] Read
aRdec?rdess . P register 1 Read
Instruction [24-20] Read data 1 -
Instrug%i%n | register 2 >ALU Zero
. . _ . _ ALU Read
1 picosecond = 10" sec Instru[ctior]| nstruction 117 - iSter data s 'fOM result Address” (15 1,3,
u
memer Write) 1x 8(
Load inst ti lat . Y| data Registers | write _Data
oad Instruction latency (In ps data Memory
200 + 100 + 200 + 200 + 100 Instruction [31-0] 32 Imm 64 }
Gen
instruction register ALU data register
fetch read access Wwrite Instruction [30,14-12]

Clock cycle >= 800 ps

Our basic design is slow

* Longest delay determines clock period
e Critical path: load instruction
* Instruction memory — register file - ALU — data memory — register file

* Not feasible to vary clock period for different instructions
* Next: improve performance by pipelining

Pipelining: a laundry analogy

Time s Tm . pow] N pon| s e |
Task

order
~ B5==]
B wash dry fold store . O %-
C . O %-
D

6 PM 7 8 9 10 11 12 1 2 AM

Time —W | | | | |

Task
order

A~ I

B
C
D

®
m

Pipelined laundry: overlapping execution
e Parallelism improves performance

RISC-V Pipeline

* Five stages:

IF: Instruction fetch from memory

ID: Instruction decode & register read

EX: Execute operation or calculate address
MEM: Access memory operand

WB: Write result back to register

A

Pipeline Performance E——

Program

execution Time 200 400 600 800 1000 1200 1400 1600 1800
order T T T T T T T T T
(in instructions)
Id x1, 100(x4) Meton | |Rea| ALU | 022 | Reg
Id x2, 200(x4) 800 ps '"s;;‘t'g;b" Reg| ALU as:;s Reg
= " | Instruction
Id x3, 400(x4) 800 ps fetch
800 ps
Pipelined (T.= 200ps)
Program
execution . 200 400 600 800 1000 1200 1400
Time T T T T T T T
order
(in instructions)
Id x1, 100(x4) '"s};‘t‘fﬁb" Reg| ALU aE:et-:s Reg
Id x2, 200(x4) 200 ps '"sft;‘t’g:on Reg| ALU aE:etzs Reg
Id x3, 400(x4) 200 ps '"sf‘;‘t‘ff,b" Reg| ALU af;’féis Reg

200 ps 200 ps 200 ps 200 ps 200 ps

Pipeline Speedup

* Pipelining increases throughput (instructions/sec)
 Latency (time for each instruction) does not decrease

* If all stages are balanced (i.e., all take the same time)
* throughput,eiineg = NUMber-of-stages * throughput,,.ipelined

* If not balanced, speedup is less

N

Throughput = 1/(time between instructions)

Pipelining and ISA Design

* RISC-V ISA is designed for pipelining
* All instructions are 32-bits

* Easier to fetch and decode in one cycle
 c.f. x86: 1- to 17-byte instructions

* Few and regular instruction formats
* Can decode and read registers in one step

* Load/store addressing
* Can calculate address in 3™ stage, access memory in 4t stage

Pipeline challenges: hazards

* Situations that prevent starting next instruction in the next cycle

* Structure hazard
* A required resource is busy

* Data hazard
* Need to wait for previous instruction to complete its write

e Control hazard
* Which instruction to execute depends on previous instruction

Structure Hazards

* Conflict use of a single resource

* Example: Suppose CPU uses a single memory
* Load/store requires data access

* |Instruction fetch would have to stall for that cycle
* Would cause a pipeline “bubble”

* Solution: Use separate instruction/data memories

Data Hazards

* An instruction depends on the previous instruction to complete its write

add x19, x0, x1 Regfile is written;
sub x2. x19. x3 left-shading
Regfile is ’ ’ indicates write
read
T 200 400 600 800 JOO0 1200 1400 1600
Ime I | | T | I T >
add x19, x0, x1 IF —= 1D MEM WB |

Instruction mem is
read; right-shading
indicates read

sub x2, x19, x3

bubble
O

bubble

bubble bubble bubble
O O O

bubble bubble
O O

%’—MEM

bubble

D

I

IF . ID

Control hazard

e Wait until branch outcome is determined before fetching next instruction

Program
execution Ti 200 400 600 800 1000 1200 1400
Ime T I | | T I I >
order
(in instructions) Assume we put in extra
Instruction Data hardware to resolve branch
add x4, x5, x6 fetch Reg| ALU access | Y9 outcome at this stage
Instruction 7] Data
beq x1, x0, 40 m fetch Reg ALU access Reg

Control hazard

e Wait until branch outcome is determined before fetching next instruction

Program
execution Ti 200 400 600 800 1000 1200 1400
order ime | I | | I I I >
(in instructions)
add x4, 35,56 e |res| A aS:;;
Instruction Data
beq x1, x0, 40 m fatch Reg access
bubble/(bubble/ bubble/ bubble bubble
O O
or X7, x8, x9 <« »{|nstruction Data R
\/ 400 PS fetch access €9

A basic pipelined RISC-V CPU

Pipelined Datapath

b : ! | ! o
IF: instruction 1 ID: instruction | EX: execute/ | MEM: . WB: write-
fetch : decode/reg : address calc : memory : back
I read I | access !
l } !
ﬁ i i
4 —p : : !
> Add ! i '
. I |' |
> ﬁ | i
F ! |
i I |
0 | Read Read F |
': pC Address ‘ register 1 data 1 l
X Read
1 ' register 2 Address '
Instruction Registers [i?:—:at: | >{ 1
h Wn"te Read h Data ' M
Instruction [register data 2 memory [u
memery ‘ .| Write F l X
" | data ! Write 2
: F data !
|
) h 32 mm 184 h #
Right-to-left | | Gen | |
flow leads to | U , ; |
|
hazards | i E |

Pipeline registers

: needed to hold data produced in previous cycle

Y

xc=°

Y

>Add

4 —>

PC

Address

Instruction
memory

IF/ID

Read
register 1

Read
register 2

Read
data 1

Registers po,q

Write
register
Write
data

data 2

result

/

EX/MEM

Y

Address

Write
data

Data
memory

Read
data

IF for Load, Store

| d . Single-clock-cycle diagram shows the state of an entire datapath
" during a single clock cycle

Instruction fetch

IF/ID ID/EX EX/MEM MEM/WB
>Add > -
4 —
@
0
M c
u PC [—@—-»-|Address 2 Read
g i Read
o 2 register 1 > >
>\ 1 ‘g’ data 1
- Read > Zero |1 —
Instruction register 2 ALU
> Registers Reaq ALU - Read
meniaiv) ea > —@—>| Address Bl 1
Write data2[> B OM result data »
\r:\a/glster u Date :
rite memory
— x
data 1 0
Write
o - data
32\ Imm 64 -
A Gen

ID for Load, Store, ...

Id

Instruction decode

IF/ID

o>

Address

Instruction
memory

ID/EX

Instruction

Read
register 1 Read
data 1

Read
register 2

Registers Read
Write data 2
register
Write
data

Shift
left 1

EX/MEM

Address
Data
memory
Write
data

Read
data

MEM/WB

Y

EX for Load

Id

Execution

Y

u PC

EX/MEM
W) :
>ALU Zero > —>
ALU
result > —@—>| Address
/ Data
memory
Write
> > data

IF/ID ID/EX
> Add o g g
4 —»
Shift
left 1
Address c Read Read
O register 1 ea >
3] data 1
= Read
Instruction . = registelraggisters
memory Write Read > -
register data 2 h:
»-| Write
data ’
32 Imm | 64
N\

\

Gen

Read
data

MEM/WB

Y

MEM for Load

IF/ID

PC

o>

Address

Instruction
memory

ID/EX

Instruction

'

Read

register 1 Read
©9 data 1
Read
register 2

Registers Read
Write data 2
register
Write
data

Shift
left 1

Memory
EX/MEM
—
Read
~@—»-| Address data
Data
memory
Write
- > data

MEM/WB

d
| |

WB for Load

| Write-back I

IF/ID ID/EX EX/MEM MEM/WB
4
Shift
left 1
0
M c
u PC Address % Read
N 2 register 1 Read | _ |
1 ® data 1
= Read
Instruction register 2
i Read
memory sters Read I Address data [
data 2
Data
/V
> memory
// data
Write
> data
32
Wron >
ong x
register
number

Corrected Datapath for Load

IF/ID

Address

Instruction
memory

ID/EX
>
&
—— Read R
3 register 1 ead |
° 9 data 1
£ Read
register 2
Registers Read
| VWrite data 2
" | register
; Write
data
32 64

Shift
left 1

Zero

DALU

result

\

EX/MEM
—
-@—| Address
Write
> > data

Data
memory

Read
data

MEM/WB

Y

Y

EX for Store

sd

Execution

Y

PC

Address

Data
memory

Write
data

Read
data

MEM/WB

Y

IF/ID ID/EX EX/MEM
> Add > . . \
4 — >AddSum >
Shift
left 1
Address c . | Read Read
2| |register 1 ea > >
e data 1
< Read Zero >
Instruction _ < register 2 >A|-U ALU
Ll - . :
memory | Write RGQIStefSRea q > result >
register data 2 /
> Write
data
3% Imm | 64

A

Gen

MEM for Store

4 —

IF/ID

u PC

Address

Instruction
memory

ID/EX

Instruction

'

Read

register 1 Read
ed data 1
Read
register 2

Registers Read
Write data 2
register
Write
data

Shift
left 1

result

Memory
EX/MEM MEM/WB
—
Read
—@—>-| Address data ™1
Data
memory
Write
- - data
>

WB for Store

4 —
- 0
M
u PC Address

X
s

Instruction

memory

ID/EX

IF/ID
c
-% Read Read
2 register 1 ea
75 9 data 1
£ Read
register 2
Registers Read
Write data 2
register
, Write
data

Shift
left 1

ALU
result

EX/MEM
- | —
P ~@—»-| Address
Data
memory
Write
> - data

Read
data

sd
I |

| Write-back |

MEM/WB
e 1
M
u
X
0
>

Single-Cycle Pipeline Diagram

e State of pipeline in a given cycle

add x14, x5, x6

Id x13, 48(x1)

add x12, x3, x4

sub x11, x2, x3

Id x10, 40(x1)

Instruction fetch

|

Address

Instruction
memory

| Instruction decode | Execution | Memory
IF/ID ID/EX EX/MEM
Shift
left 1
- Read Read
register 1
% g data 1 > \
% Read Zero > _—
2 register2 ALU
— Registers poaq ALY Address Read
Write data 2 > OM result data
register u / Data
Write % memory
| data >\ 1
Write
data
32 Imm 64
Gen |

| Write-back
MEM/WB
| e |
M
u
X
0

Multi-Cycle Pipeline Diagram

* Traditional form

Program
execution
order

(in instructions)

Id x10, 40(x1)
sub x11, x2, x3
add x12, x3, x4
Id x13, 48(x1)

add x14, x5, x6

Time (in clock cycles) >
CC 1 CC 2 CC3 CC4 CC5 CC6 CC7 CC8 CC9
Instruction | Instruction Execution Data Write-back
fetch decode access
Instruction | Instruction Execution Data Write-back
fetch decode access
Instruction | Instruction Execution Data Write-back
fetch decode access
Instruction | Instruction Execution Data Write-back
fetch decode access
Instruction | Instruction Execution Data Write-back
fetch decode access

Multi-Cycle Pipeline Diagram

* Form showing resource usage

Time (in clock cycles) >

CC 1 cC2 CcC3 CC 4 CC>5 CcC 6 CcC7 cC 8 cCo9
Program
execution
order
(in instructions) — - - —
| =T I__I
Id x10, 40(x1) IM —-Reg >ALU DM Reg!
| — I —1
b x11, X2, x3 IM || ERed| SALU DM —E_}
sub x11, x2, x i~eg| | I c9

add x12, x3, x4 M | F=Reg SALU DM} —Reg
| E—— I — 1

Id x13, 48(x1) IM —d§eg| SALU DM —Ee_g:
I — I — 1

[-1
add x14, x5, x6 IM —':ilReg| >ALU DM Reg

1

Y

Summary

* Basic single-cycle CPU design
e Data path vs. control path
* Clock frequency is limited by the longest delay

* Basic 5-stage pipelined design:
* Main idea: Parallel processing of different stages of an instruction’s execution
e RISC-V 5-stage pipeline (IF, ID, EXE, MEM, WB)
* Pipeline hazards: structure, data, control

