
Basic/Pipelined processor 
Implementation

Jinyang Li



Today’s lesson plan

• Basic single-cycle CPU design, continued
• Pipelining idea and challenges



Recall our basic RISC-V CPU: datapath w/ control
Control derived 

from 
instruction type



R-Type Inst
add x5, x6, x7

funct7 rs2 rs1 rdfunct3 opcode



BEQ Instruction
beq x5, x6, 100

rs2 rs1 funct3 opcode



Load Inst
ld x5, 40(x6)

immediate rs1 rdfunct3 opcode



Basic CPU must finish an instruction in one clock cycle 
à use a “slow” clock

Load instruction latency (in ps) 

200
instruction

fetch

1 picosecond = 10-12 sec

+ 100
register

read 

+ 200 
ALU

+ 200 
data 
access

+ 100 
register 
write

Clock cycle >= 800 ps



Our basic design is slow

• Longest delay determines clock period
• Critical path: load instruction
• Instruction memory ® register file ® ALU ® data memory ® register file

• Not feasible to vary clock period for different instructions
• Next: improve performance by pipelining



Pipelining: a laundry analogy

wash dry fold store

Pipelined laundry: overlapping execution
• Parallelism improves performance



RISC-V Pipeline

• Five stages:
1. IF: Instruction fetch from memory
2. ID: Instruction decode & register read
3. EX: Execute operation or calculate address
4. MEM: Access memory operand
5. WB: Write result back to register



Pipeline Performance Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)



Pipeline Speedup

• Pipelining increases throughput (instructions/sec)
• Latency (time for each instruction) does not decrease

• If all stages are balanced (i.e., all take the same time)
• throughputpipelined = number-of-stages * throughputnonpipelined

• If not balanced, speedup is less

Throughput = 1/(time between instructions)



Pipelining and ISA Design

•RISC-V ISA is designed for pipelining
• All instructions are 32-bits
• Easier to fetch and decode in one cycle
• c.f. x86: 1- to 17-byte instructions

• Few and regular instruction formats
• Can decode and read registers in one step

• Load/store addressing
• Can calculate address in 3rd stage, access memory in 4th stage



Pipeline challenges: hazards

• Situations that prevent starting next instruction in the next cycle
• Structure hazard
• A required resource is busy

• Data hazard
• Need to wait for previous instruction to complete its write

• Control hazard
• Which instruction to execute depends on previous instruction



Structure Hazards

• Conflict use of a single resource
• Example: Suppose CPU uses a single memory
• Load/store requires data access
• Instruction fetch would have to stall for that cycle

• Would cause a pipeline “bubble”

• Solution: Use separate instruction/data memories



Data Hazards
• An instruction depends on the previous instruction to complete its write

add x19, x0, x1
sub x2, x19, x3

Instruction mem is 
read; right-shading 

indicates read

Regfile is 
read

Regfile is written; 
left-shading 

indicates write



Control hazard
• Wait until branch outcome is determined before fetching next instruction

Assume we put in extra 
hardware to resolve branch 

outcome at this stage



Control hazard
• Wait until branch outcome is determined before fetching next instruction



A basic pipelined RISC-V CPU



Pipelined Datapath

Right-to-left 
flow leads to 
hazards

IF: instruction 
fetch

ID: instruction 
decode/reg 
read

EX: execute/ 
address calc

MEM: 
memory 
access

WB: write-
back



Pipeline registers : needed to hold data produced in previous cycle

IF/ID ID/EX EX/MEM MEM/WB



IF for Load, Store
Single-clock-cycle diagram shows the state of an entire datapath
during a single clock cycle



ID for Load, Store, …



EX for Load



MEM for Load



WB for Load

Wrong
register
number



Corrected Datapath for Load



EX for Store



MEM for Store



WB for Store



Single-Cycle Pipeline Diagram
• State of pipeline in a given cycle



Multi-Cycle Pipeline Diagram
• Traditional form



Multi-Cycle Pipeline Diagram
• Form showing resource usage



Summary

• Basic single-cycle CPU design
• Data path vs. control path
• Clock frequency is limited by the longest delay

• Basic 5-stage pipelined design:
• Main idea: Parallel processing of different stages of an instruction’s execution
• RISC-V 5-stage pipeline (IF, ID, EXE, MEM, WB)
• Pipeline hazards: structure, data, control


