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Today’s lesson plan

 Basic single-cycle CPU design, continued
* Pipelining idea and challenges



Recall our basic RISC-V CPU: datapath w/ control
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BEQ Instruction
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Basic CPU must finish an instruction in one clock cycle
- use a “slow” clock
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Our basic design is slow

* Longest delay determines clock period
e Critical path: load instruction
* Instruction memory — register file - ALU — data memory — register file

* Not feasible to vary clock period for different instructions
* Next: improve performance by pipelining



Pipelining: a laundry analogy
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RISC-V Pipeline

* Five stages:

IF: Instruction fetch from memory

ID: Instruction decode & register read

EX: Execute operation or calculate address
MEM: Access memory operand

WB: Write result back to register

A



Pipeline Performance E——
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Pipeline Speedup

* Pipelining increases throughput (instructions/sec)
 Latency (time for each instruction) does not decrease

* If all stages are balanced (i.e., all take the same time)
* throughput,eiineg = NUMber-of-stages * throughput,,.ipelined

* If not balanced, speedup is less

N

Throughput = 1/(time between instructions)



Pipelining and ISA Design

* RISC-V ISA is designed for pipelining
* All instructions are 32-bits

* Easier to fetch and decode in one cycle
 c.f. x86: 1- to 17-byte instructions

* Few and regular instruction formats
* Can decode and read registers in one step

* Load/store addressing
* Can calculate address in 3™ stage, access memory in 4t stage



Pipeline challenges: hazards

* Situations that prevent starting next instruction in the next cycle

* Structure hazard
* A required resource is busy

* Data hazard
* Need to wait for previous instruction to complete its write

e Control hazard
* Which instruction to execute depends on previous instruction



Structure Hazards

* Conflict use of a single resource

* Example: Suppose CPU uses a single memory
* Load/store requires data access

* |Instruction fetch would have to stall for that cycle
* Would cause a pipeline “bubble”

* Solution: Use separate instruction/data memories



Data Hazards

* An instruction depends on the previous instruction to complete its write
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Control hazard

e Wait until branch outcome is determined before fetching next instruction
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Control hazard

e Wait until branch outcome is determined before fetching next instruction
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A basic pipelined RISC-V CPU



Pipelined Datapath
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Pipeline registers

: needed to hold data produced in previous cycle
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IF for Load, Store

| d . Single-clock-cycle diagram shows the state of an entire datapath
" during a single clock cycle
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ID for Load, Store, ...
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EX for Load
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MEM for Load
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Corrected Datapath for Load
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EX for Store
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MEM for Store
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WB for Store
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Single-Cycle Pipeline Diagram

e State of pipeline in a given cycle
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Multi-Cycle Pipeline Diagram

* Traditional form
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Multi-Cycle Pipeline Diagram

* Form showing resource usage
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Summary

* Basic single-cycle CPU design
e Data path vs. control path
* Clock frequency is limited by the longest delay

* Basic 5-stage pipelined design:
* Main idea: Parallel processing of different stages of an instruction’s execution
e RISC-V 5-stage pipeline (IF, ID, EXE, MEM, WB)
* Pipeline hazards: structure, data, control



