Computer Systems Organization

Recitation
CSCI-UA 0201-007

RO1: Introduction & Environment Setup

Many slides are based on John Westhoff’s Fall 2019 CSO recitation

Logistics

Important things you should know

What is this recitation for?

* Help you better understand the course contents, including but not
limited to:
- Reinforce this week’s lecture content
- Review previous week’s assessment
- Some exercises meant to help with the labs/assessments

* Make us all suffer by making us get up early

Where we release course materials

Course website

- Recitation slides also on the course schedule page

NYU Brightspace

- Zoom recitation links/recording

CampusWire
- It’s your responsibility to read Instructor’s Note on Campuswire
- You are encouraged to ask questions on Campuswire

GitHub
- All labs are released on GitHub
- You will submit all labs on both GitHub and Gradescope

Gradescope
- Weekly mini-quiz on Gradescope

https://nyu-cso.github.io/

How to contact us

* Don’t be afraid to ask questions!

* If you have general questions about course contents or labs
- Ask on Campuswire

- Come to office hours } If you want more personal question
- Register the in-person recitation answering

* If you want to send us a private message
- Email cso-staff mailing list at cso-staff@cs.nyu.edu

How are we going to proceed?

* For the first two weeks, we will focus on lab setups, usage of basic
tools, etc.

- Today we will cover lab related setups
- Next recitation will cover programming tools

- From next week
- We will also review weekly assessment, reinforce some course contents,
exercises to prepare for your labs
* Weekly assessments will be due Friday 9pm EST
- Done on Gradescope, do it early
- No late submission

Academic Integrity

* All work must be your own — do not copy or even look at assignments done

by others
- Don’t ask StackOverflow or Chegg for help - if you need it, ask us!
- Don’t hire someone to do your work for you

* We reserve the right to use software plagiarism detection tools such as Moss
* It’s not worth the risk, just don’t cheat and make us sad
* More details:

https://nyu-cso.github.io/policy.html

Getting Startead

Important things you must do

Today’s Topics

* Log into snappyl
* Setting up your git repositories
* Basic Unix commands

* Program development

 Editor (Nano)
* Version control (Git)

Today’s Goal

* By the end of today’s recitation, you should
* Be able to log into snappyl

* Have GitHub ready for you to submit work
* An account
* Lab-1 repository
* Know how to submit assignments

10

Log Into snappyl

* Follow instructions
* Separate instructions for Mac and Windows

* Forget password?

* Demo

11

https://nyu-cso.github.io/labs/
https://cims.nyu.edu/webapps/password

Log Into snappyl

12

You test your code on

snappyl

* We recommend you to do your labs on snappyl and

* More tools are available for debugging (gdb etc.)

* Gradescope runs the same test script

* In ge

* [fyouc
any tec
doing t

neral, there should be no surprises

Nnical support should you encounter any OS-related issues in

ne labs

hoose to do your labs outside of snappyl, we will not provide

13

’'m in snappyl, how what?

14

Basic Commands

e Some useful commands to know:

man
s, cd, pwd, mkdir

cp, mv, rm

echo, cat

WC

grep

ctrl-c,ctrl-d, ctrl-z, fg, bg
|, >, <, >>

apt install/search
history, ctrl-r

15

Basic Commands

* Whenever you want to find out how to do something using command
line, ask Google first

 Here are some useful links:
* A one-pager: https://nyu-cso.github.io/labs/linux_cheat_sheet.pdf
* A more descriptive source github.com/jlevy/the-art-of-command-line

16

https://github.com/jlevy/the-art-of-command-line

Editor

* You need a good editor to code with for productivity

* Popular editors used by programmers:
* vim
®* emacs
e vscode
* sublime
®* Nadno

* We recommend YOU use nano
* Unfortunately, vscode and sublime are not installed on snappyl
* No self-respecting programmers use nano, but you can get by with nano in CSO

17

Brief Intro of Nano Editor

e To create/edit a file
* nano <Path to (Save) the File>
e Edit
e Hit Ctrl+0O to save your changes (* means Ctrl)
* Hit Ctrl+X to exit

18

Setup GitHub/labl repo

* Create a GitHub account if you don’t have one

* We have created for you a corresponding private lab repository on
Github.com

* Enroll yourself in the GitHub classroom

* Create your lab-1 repository by following the link posted on Campuswire
* Select your NYU NetID @ [o e

Lab Assignments Info

* Very important!
* Don’t select someone else’s NetID! Lab sssignments'gthub cassroom fnks:

e clab-par

* If you cannot find your NetlID, let me know! e

Bo Do

e Setup GitHub ssh-based logins:

19

https://nyu-cso.github.io/labs/

Setup GitHub/labl repo

20

Git Overview s

* Distributed version control system

e What is version control?

* Manages to documents, source files and other collections of
information

* Why is version control indispensable?
* History tracking: track code changes
* Roll back to older version
* Collaborate with others (collaborative history tracking)

* We are going to use the popular “Git” as our version control system

21

You need to config git first!

* git config --global user.email “<Your Email>”
e git config --global user.name “<Your Name>"
* You can issue “git config --list” to check your configuration

* Here, the <Your Email> should be the one associated with your
GitHub account

22

A list of git commands you need

* git clone

* git status

* git remote

e git add <file name>

* git commit -m <commit messages>
* git push origin master

e git pull upstream master

23

Git Overview ‘
 GitHub:

* provides hosting for software development ‘

and version control using Git.
Submit assignments

to GitHub

Pull assignments from
GitHub (clone lab
repo)

\WEG
locally

snappyl
24

Clone your lab repo on Snappy

* In command line, type:
* mkdir cso-labs

— ¢ cd cso-labs
* git clone git@github.com:nyu-cso-fa21/clab-partl-<Your Github Username>.git

—

clab-partl
h * If you copy the above command to command line, don’t let the line break
* Replace <Your GitHub Username> () with your GitHub
username.

* cd clab-partl

25

Git Setup

The remote copy is stored in

/ some efficient format

26

A closer look at your repository stored on snappyl

Local repository stored on snappyl

27

How to interact with Git

git commit

e git add hello_world.c
* Tell git to track changes to hello_world.c

* git commit
* Store tracked file to .git

* git push origin master
* Submit commits to your remote repository

Github.com
28

GIt commit

* When you issue “git commit”, you are required to provide a message
which is a short description of the changes you made

* Use "-m"/"--message" option to specify that
e E.g.: git commit-m “my first commit”
* Warning: please remember to add "-m"/"--message"

* If you unfortunately forget:
* a command line editor will pop up for you to edit the commit message

e By default, vim, which is not really friendly to beginners (see the short guide
in the end)

29

Double check with “git status”

* Sometimes, you might forget to do some (or all) of
* git add, git commit, git push

* It’s always good to check the status of your repository

* git status tells you
* What files are going to commit
* What files are not tracked
* Whether you forget to push commits to remote

30

Triple check with GitHub

e Still not sure/confident about whether commits was submitted
properly?

* Goto , then go to your repo

 Manually check if every file contains the up-to-date information

31

https://github.com/

For each new assignment

* Create lab repo on GitHub (click link, select yourself) (covered)

* Clone your lab repo to snappyl
* cd cso-labs

e git clone git@github.com:nyu-cso-fa21/clab-partl-<YourGithubUsername>.git
clab-partl

* Make changes accordingly
* Tell git to track changes: git add <Changed/Newly-Created Filenames>

 Commit your changes
e git commit -m “commit messages”

* Push to your remote repository (on GitHub)
 git push origin master

32

Git push commit demo

[dd3049@access1 ~1s i

All the git commands you need for CSO

* For beginners, it’s super easy to mess up Git
* Notably conflicts, typically seen for collaboration, but not for individual usage

* To avoid conflicts, only clone the repo once for each lab

 After setting lab repository, you ONLY need to use the following git
commands:

* git add filenames
. o LU . ” Warning: unless you know what you are
git commit -m “commit message doing, do not use any other git commands

* git push origin master or git command flags
* git clone your-lab-repo lab

* git status

34

Ask the staff for help

* If you really cannot fix conflicts or other git problems, you should ask
course staff for help

* You need to email the staff or attend office hours
* You should start your lab earlier

* Don’t randomly issue commands to further mess things up

35

Things you should do

* Don’t use git add *, git add .
* Instead, you should always specify the file names you want to commit
* Please don’t add complied programs to git

* Don’t modify any file using GitHub website

* |Instead, you should always make changes on snappyl and then push commits
to GitHub

* Otherwise, there will be conflicts, which will lead to sadness

36

Git is much powerful than that

* Our git introduction only covers a small part of Git
e Git tutorial:

37

https://www.atlassian.com/git/tutorials/what-is-versioncontrol
https://try.github.io/levels/1/challenges/1

How to commit with Vim Editor (Optional)

hanges to be committed:
(use "git reset HEAD <file>..." to unstage)

* The default editor is called Vim

B2 i T S - |

modified: array.c

* To add a commit message from vim
e First hit Esc (make sure you're in Normal mode)
* Then hit "i" (entering Insert mode)
* Then type in some commit message
* Hit Esc (exiting Insert mode, going back to Normal mode)
* Then type in ":wq" and press Enter (exit vim)

* If you are lost, hit Esc and start from the beginning

38

