
CSO-Recitation 02
CSCI-UA 0201-007

R02: GCC & Makefiles & Test



Today’s Topics

• Mini quiz in last week
• Compiling with gcc
• Makefiles
• Testing code

2



Mini quiz - Q1

• Facebook has 2.7 billion users. If it is to use an unsigned int as user-id, 
what's the smallest sized int can it use?
• A. 1-byte B. 2-byte C. 3-byte D. 4-byte E. 8-byte

3



Mini quiz - Q1

• Answer: D. 4-byte
• 3 bytes = 24 bits, range: 0 ~ 2^24 - 1
• 4 bytes = 32 bits, range: 0 ~ 2^32 - 1
• 2^24 - 1 < 2.7 * 10^9 < 2^32 – 1

4



Mini quiz - Q2

• Which of the following signed 1-byte int (in binary format) is the 
smallest?
• A. 00000000 B. 10000001 C. 11111111
• D. 00000001 E. 10000011 F. 01111110

5



Mini quiz - Q2

• Answer: B. 10000001
• For signed int, convert it into a decimal number: 
• For i-th bit, (i-th bit) * (+/- 2^i).
• highest bit: *(-2^i), others: *(+2^i)

• Smallest:
• Highest bit is 1
• For other bits(positive), pick the smaller one

6



Mini quiz - Q3

• Convert bit pattern 10111110 to hex notation. You must prefix your 
answer with 0x.

7



Mini quiz - Q3

• Answer: 0xbe
• 10111110
• 1011 1110
• 1011 = b, 1110 = e

8



Mini quiz - Q4

• Which of the following 1-byte unsigned subtraction operation will 
overflow?
• A. 0xff – 0x0f B. 0x0f – 0xff C. 0x01 – 0x0f D. 0x0f - 0x01

9



Mini quiz - Q4

• Answer: B. 0x0f – 0xff, C. 0x01 – 0x0f
• Overflow: when the result is out of the range of the representation
• 8-bit unsigned range: 0 ~ 2 ^ 8 – 1
• For unsigned operation:
• Case 1: when the result is negative
• Case 2: when the result is positive but too large ( > 2^8 – 1 in this question)

10



Mini quiz - Q5

• Which of the following 1-byte signed addition operation will 
overflow?
• A. 0xff + 0xfe B. 0x1f + 0xff C. 0x71 + 0x70
• D. 0x05 + 0xfe E. 0x80 + 0x8f

11



Mini quiz - Q5

• Answer: C. 0x71 + 0x70, E. 0x80 + 0x8f

• Overflow: when the result is out of the range of the representation

• 8-bit signed range: - 2^7 ~ 2^7 – 1

• For signed operation:
• Case 1: adding two positive numbers, but the MSB of the result is 1 (negative)
• Case 2: adding two negative numbers, but the MSB of the result is 0 (positive)

• Case 1 & Case 2: for adding numbers with the same signs, overflow <=> MSB is incorrect

• Note: overflow wouldn't happen if you add a negative number and 
a positive number.
• Why?

12



Mini quiz - Q6

• If x has bit pattern 0xffffffff, what's the value of x?
• A. -1, if x is signed int
• B. -1, if x is unsigned int
• C. 2^32 – 1, if x is unsigned int
• D. 2^31 – 1, if x is unsigned int

13



Mini quiz - Q6

• Answer: A. -1, if x is signed int. C. 2^32 – 1, if x is unsigned int

14



Mini quiz - Q7

• What's the bit pattern (2's complement) of 32-bit signed integer -130 
in hex format? (Please prefix your answer with 0x)

15



Mini quiz - Q7

• Answer: 0xffffff7e
• 130 = 16 * 8 + 2: 0000 0000 0000 …. 1000 0010
• 0000 0000 0000 …. 1000 0010 
• -> (flip) 1111 1111 1111 …. 0111 1101
• -> (+1) 1111 1111 1111 …. 0111 1110 = 0xffffff7e

16



Mini quiz - Q8

• Suppose the byte values stored at memory address a, a+1, a+2, a+3, 
a+4, a+5, a+6, a+7 are 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 
0x08 respectively. If a Little-Endian processor is to load a 4-byte 
integer from memory at address a into a 4-byte register, what's the 4-
byte register value after the load? (Please write your answer in hex, 
and prefix it with 0x)

17



Mini quiz - Q8

• Answer: 0x04030201

18

0x08

0x07

0x06

0x05

0x04

0x03

0x02

0x01 a

a+ 1

a+ 2

a+ 3

Little endian: 0x04030201
Big endian: 0x01020304



Reminder

• Your second weekly mini-quiz
• Gradescope
• Due Friday 9pm EST

19



Compiling
The basics of GCC

20



GCC

• GCC (upper case) refers to the GNU Compiler Collection
• This is an open source compiler suite which include compilers for C, C++, 

Objective C, Fortran, Ada, Go and Java
• gcc (lower case) is the C compiler in the GNU Compiler Collection

21



What is a compiler?

• C code is for people, not computers
• In fact, high level languages in general are for people
• Computer processors only “understand” binary instructions

Source code

Machine code
(binary instructions)

22
Source file: the file containing 
source code (aka all ".c" files)

Executable file: the file containing 
machine code



What is a compiler?

• C code is for people, not computers
• In fact, high level languages in general are for people
• Computer processors only “understand” binary instructions

• A compiler translates code between languages
• In our cases, it translates from C (the source language) to machine code (the 

target language)

Source file Executable file 
edit compile execute

Text editor Compiler 

(C code) (machine code)
23



What is a compiler?

• C code is for people, not computers
• In fact, high level languages in general are for people
• Computer processors only “understand” binary instructions

• A compiler translates code between languages
• In our cases, it translates from C (the source language) to machine code (the 

target language)
• An alternative way to do things is to have a program read the code 

and execute commands
• Such a program is called an interpreter
• Python is an example of a language that uses an interpreter

24



How do you use a compiler?

• Consider a simple C program:
main.c
#include <stdio.h>
int main( ){

printf("Hello CSO!\n");
return 0;

}

• To run this program, we must first compile it
• Can use gcc: gcc main.c -o myprogram
• A file named myprogram is generated
• You can run it with ./myprogram

25



How do you use a compiler?

26



How do you use a compiler?

• Sometimes you may want to spread the code into multiple file (e.g., the 
code is too large; or you want to divide it by functionalities)

• To compile this, we can simply specify both files
• gcc main.c util.c -o myprogram

27



How do you use a compiler?

28



A Problem

• gcc main.c util.c -o myprogram will process every source file
• Even if we only change main.c, util.c is also processed
• Problematic for large project (thousands of files), as reprocessing 

every file can be slow
• Can we only re-process the changed one?
• Yes! We can make the use of the object files (".o" files)

29



What's inside gcc main.c util.c -o myprogram?

• Roughly two steps: compilation and linking
• Compilation: For each source file (aka compilation unit), gcc creates a 

intermediate object file
• Linking: creates a single executable file from multiple object files
• Note: you won't see object files ordinarily as they are automatically 

deleted after linking

30

main.c
util.c myprogram

compile

gcc main.c util.c -o myprogram

(C code) (machine code)

main.o
util.o

link

(object code)



What's inside gcc main.c util.c -o myprogram?

• We can run both steps separatly
• To only run compilation: use the -c flag to stop before linking. It also 

preserve the intermediate object files
• gcc -c main.c

• will create main.o
• gcc -c util.c

• will create util.o

• To only run linking:
• gcc main.o util.o -o myprogram

• will link main.o and util.o and create the executable file

31



Solution to the Problem

• The problem: changing one file requires recompiling all other 
unchanged files, which are wasteful and slow
• The cure:
• use -c to create main.o and util.o
• Every time main.c is changed, recompile it with gcc -c main.c and not 

have to recompile the other
• Same when util.c is changed

• We can later do link by running gcc main.o util.o -o myprogram

32



A new problem

• Now we need to manually keep track of when and what files we have 
to recompile.
• Too much trouble, and error-prone

33



Make
A helpful build automation tool

34



What does Make do?

• Make builds (i.e. compiles) projects for us, keeping track of when it 
needs to recompile or not
• We create a file named Makefile and write down a set of rules stating 

what to track
• e.g., issue gcc -c main.c to generate main.o when main.c is changed

• Then, by issuing the command make we can build our project,
• next time you issue make, only the changed files will be recompiled

35



How do we specify rules in Makefile?

• Makefile consists of a number of ‘rules’, each of which looks like:
target ... : dependencies ...

command

• Target is usually the name of a file generated by the compiler
• e.g., main.o, util.o, myprogram

• Dependencies are files that are used as input to create the target
•main.o needs main.c
•myprogram needs main.o and util.o

• Commands are actions that will be carried out
•gcc -c main.c -o main.o

36



How do we specify rules in Makefile?

• Makefile consists of a number of ‘rules’, each of which looks like:
target ... : dependencies ...

command

• It specifies how to build target:
• If target is already built (i.e. file existed) and up-to-date (i.e. 

modified later than all the dependency files), no actions are 
carried out

• Otherwise, build each dependency first and then issue command
• To build target, issue make target

37



How do we specify rules in Makefile?

• An exmple :
myprogram: main.o util.o

gcc main.o util.o -o myprogram
• It specifies the rule to build myprogram:

• Build main.o and util.o first
• Then issue "gcc …"

• Similary we have rules for main.o and util.o:
main.o: main.c

gcc -c main.c -o main.o
util.o: util.c

gcc -c util.c -o util.o

38



How do we specify rules in Makefile?

• Issue make myprogram to build myprogram
• Try issuing it twice. You'll find that no actions are taken in the second 

run
• Try changing main.c and issue make myprogram. You'll find that 

util.c is not compiled

39



How do we specify rules in Makefile?

target ... : dependencies ...
<TAB>command

• Attention:
• There must be no space before the target, and there must be a tab 

before every command for that rule
• Running the make command builds the first target by default
• A handy and commonly seen rule

clean:
rm -f main.o util.o myprogram

• make clean is identical to "rm …" (but shorter) which removes all the files 
generated by the compiler

40



The overall Makefile

myprogram: main.o util.o
gcc main.o util.o -o myprogram

main.o: main.c
gcc -c main.c -o main.o

util.o: util.c
gcc -c util.c -o util.o

clean: 
rm -f main.o util.o myprogram

41



The overall Makefile

42



Quiz

• A bad Makefile for this little project is:
myprogram: main.c util.c

gcc main.c util.c -o myprogram
• Why is that bad?

43



That still seems bad for the 45,000 linux files.. 

• That’s right, and there are better ways of using Makefiles - this is just 
what you absolutely positively need to know

• Make also supports pattern matching with the percent sign %
• %.c means all .c files

• Make has “automatic variables”
• Variables whose meaning within a rule depends on context

• $@ is the target name that you are building for this rule

• $^ is the list of dependencies

• Example:

%.o: %.c

gcc -c $^ -o $@

44

main.o: main.c

gcc -c main.c -o main.o

util.o: util.c

gcc -c util.c -o util.o

Equivalent



That still seems bad for the 45,000 linux files.. 

45



An exercise

#TODO: Create a makefile for this project
#The name of the executable must be test
#The source code files involved are main.c and util.c
#make clean should remove test and any .o files

46



Testing 
Making sure your code does what you think it does

47



Why test code?

• You need to know that your code works
• You need to know when you broke your own code by changing 

something
• Many projects actually have more test code than production code
• An extreme example is SQLite, a popular database program

• 138,900 lines of C code for production
• 91,946,200 lines of test code

48



How do you test code?

• A common way is to write tests for individual units of code, such as 
functions
• There are many frameworks written to help developers write test cases
• You can write your own tests
• Think of edge cases that might make your code failed
• Write a program that calls your code with different inputs and checks that the 

output is what you’d expect
• You can use assert to have your program die if something goes wrong
• assert(1+1==2) will crash if 1+1 is not 2, but be fine otherwise

49


