CSCI-UA 0201-007

R03: Assessment-01 & Debugging with gdb

Today's Topics

- Weekly assessment-02
- Weekly assessment-03
- Debugging with gdb

Assessment 02

Answers and explanations

Q1 64-bit processor

Which of the following statements are true for a 64-bit processor?

- A. its registers are 64-bit in length.
- B. it only supports signed and unsigned integers of exactly 64bit in length.
- C. each memory address stores 64bit of data.
- D. each memory address is represented by a 64-bit unsigned int.

64-bit processors: Intel Pentium 4 (2000)

0x0000b0	0x0f	CPU				
0x0000a9	0xaf					
0x0000a8	0x1e	Arithmetic Logic Unit				
0x0000a7	0x4c	registers 0x00bacbea4c1eaf0f				
0x0000a6	0xea					
0x0000a5	0xcb	0x00bacbea4c1eaf0f				
0x0000a4	0xba					
0x0000a3	0x00	64 bits machine: 64 bits length				
0x0000a2	Oxff	 Memory – processor transfer 				
0x0000a1	0x8c	CPU register				
		Memory address				
	Memory	Nowadays: Intel/AMD 64-bit x86 processors used for serv Mobile phones/tablets: 64-bit ARM processors (made by Apple/Qualcomm/Samsung etc)				

vers/laptops

Q2 Normalized Exponential Representation

Which of the following is a **normalized** exponential representation in either binary or decimal?

- A. $(0.11)_2 * 2^1$
- B. $(1.00)_2 * 2^{-10}$ C. $(10.11)_2$
 - D. (78.5) 10^{*}2¹⁰
 - E. (7.85)₁₀*10¹

Binary:

Normalized exponential representation: + M * 2^{E} , where 1<=M<2, M=(1.F)₂

Decimal: Normalized Scientific notation: <u>+ M * 10^E</u>, where 1<=M<10

Q3 IEEE Floating Point

What's the value of the 32-bit IEEE floating point with bit pattern 0xc0600000? (Give your answer in the form of regular decimal fractional notation xxx.yyy with no leading nor trailing zeros)

• -3.5

- 0xc0600000
- S=1 -> -M*2^E
- $exp=(1000000)_2 = 2^7 = 128$
- E= exp-bias = exp-127 =1
- $M=(1.1100...000)_2 = 2^0 + 2^{-1} + 2^{-2} = 1.75$
- $-M^*2^E = -1.75^*2^1 = -3.5$

Q4 Signed/Unsigned int

Given a 32-bit bit pattern 0xffffffff, what is the value if we are to interpret the bit pattern as an unsigned int **or** signed int?

- A. 2³¹
- B. 2³²
- C. 2³¹-1
- D. 2³²-1
 - E. -1 F. - 2³¹
 - **F**. **- Z**⁻⁻
 - G. 2³²
 - H. $-2^{31}+1$
 - I. $-2^{-32}+1$
 - J. None of the above

Unsigned: $-b_{n-1}2^{n-1} + \sum_{i=0}^{n-2} b_i 2^i$

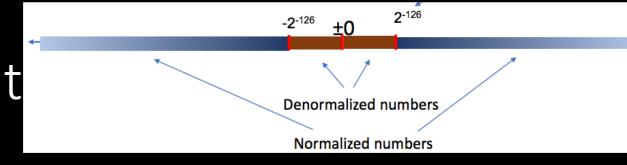
Signed: $\sum_{i=0}^{n-1} b_i 2^i$

Oxffffffff: all $b_i = 1, n = 32$

Q5 IEEE Floating Point

Given a 32-bit bit pattern 0xffffffff, what is the value if we are to interpret the bit pattern as an IEEE 32-bit floating point number.

A. NaN


- $B_{\bullet} \infty$
- \mathcal{C} . $-\infty$
- D. 0
- *E.* $\approx 2^{129}$
- *F.* $\approx -2^{129}$
- G. None of the above

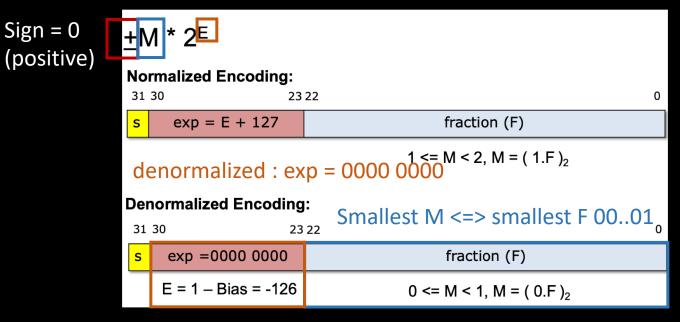
- Oxffffffff
- <u>1111 1111 1111 1111 11....11</u>
- Special values

Special Value's	Encoding:	
31 30	23 22	0
<mark>s</mark> 1111 1	111	fraction (F)

values	sign	frac
∞ +	0	all zeros
- 00	1	all zeros
NaN	any	non-zero

Q6 IEEE floating point

Which of the following statements are true about IEEE floating points?


- A. The number zero is represented in normalized encoding
- B. The number zero is represented in denormalized encoding
- C. All deportalized numbers are closer to zero than normalized numbers
- D. Some but not all denormalized numbers are closer to zero than normalized numbers.
- E. The exponent value (E) in denormalized encoding is 1-127 = -126.
- F. The exponent value (E) in denormalized encoding is 0-127 = -127.

rmaliz	zed:		Der	normalized:	31 30	0 23	22	0
31 30			0			exp =0000 0000	fraction (F)	
S	exp = E + 127	fraction (F)				E = 1 – Bias = -126	0 <= M < 1, M = (0.F) ₂	

Q7 FP (smallest positve)

What's the bit-pattern of the smallest positive single precision IEEE floating point number? Smallest: denormalized & smallest M

- 0x7000001 A.
- 0x8000001 B.
- 0x00000001
- D. 0x0007ffff
- 0x7f800000 E.
- Ox7f7fffff F.

Q8 FP (largest positve)

What's the bit-pattern of the largest positive single precision IEEE floating point number? (\infty∞ does not count)

(0x70000	001		Sign = 0	<u>+</u>	N	* 2 ^E	
(00008x0	001		(positive)	No	orm	alized Encoding:	22 0
		•			s		exp = E + 127	fraction (F)
31 S	1111 1111 21	3 22	fraction (F)	0	L	arg	gest E: exp = 1	1 <= M < 2, M = (1.F) ₂
				_			-	Largest M <=> largest F 1111
	values	sign	frac					
	+ ∞	0	all zeros	_	S		exp =0000 0000	fraction (F)
	- ∞ NaN	1 any	all zeros	_		E	E = 1 – Bias = -126	0 <= M < 1, M = (0.F) ₂
	Spe 31	Ox80000 Special Value's Encodid ^{31 30} 2 s 1111 1111 values +∞	s 1111 1111 values sign $+\infty$ 0 $-\infty$ 1	Ox8000001Special Value's Encoding:31 3023 22s1111 1111fraction (F)valuessignfrac $+\infty$ 0all zeros $-\infty$ 1all zeros 1 1 zeros	(positive) Ox8000001 Special Value's Encoding: $31 \ 30 \qquad 23 \ 22 \qquad 0$ s 1111 1111 fraction (F) 1111 1111 fraction (F) values sign frac $+\infty$ 0 all zeros $-\infty$ 1 1 all zeros 1 1 all zeros 1	(positive)	$\begin{array}{c} \text{(positive)} \\ \text{Norm} \\ \text{31 } \text{30} \\ \text{Special Value's Encoding:} \\ \text{31 } \text{30} \\ \text{32 } \text{32 } \text{23 } \text{23 } \text{20} \\ \text{s} 1111 1111 \\ \hline \text{fraction (F)} \\ \hline \text{Large} \\ \hline \text{Values} \frac{\text{sign}}{+\infty} \frac{\text{frac}}{1} \\ \hline +\infty & 0 \\ \text{all zeros} \\ \hline -\infty & 1 \\ \hline \text{all zeros} \\ \hline In the second se$	(positive) Normalized Encoding: 31 30 23 Special Value's Encoding: 31 30 23 Special Value's Encoding: 31 30 23 S exp = E + 127 Largest E: exp = 1 Denormalized Encoding 31 30 23 S exp = E + 127 Largest E: exp = 1 Denormalized Encoding 31 30 23 S exp = 0000 0000 E = 1 - Bias = -126

Q9 FP (precision)

- What the highest and lowest precision points?
- A. 2^{-149} and 2^{105}
- B. 2^{{-150}} and 2^{{104}}
- C. 2^{-149} and 2^{104}
- D. 2^{-150} and 2^{105}
- E. 2^{-23} and 2^{23}
- F. 2^{-126} and 2^{127}
- G. 2^{-127} and 2^{127}

<u>+</u> M * 2 ^E				
Normalized Encodin	g:			
31 30	23 22		0	
s exp = E + 127		fraction (F)		
		1 <= M < 2, M = (1.F) ₂		
Denormalized Encoding:				
31 30	23 22		0	
s exp =0000 000	0	fraction (F)		
E = 1 – Bias = -1	26	0 <= M < 1, M = (0.F) ₂		

$$(x.b_1...b_{23})_2 * 2^E = x * 2^E + \sum_{i=1}^{23} b_i * 2^{E-i}$$

It's precision is E-23 (the smallest change you can make is flipping b_{23} which gives 2^{E-23} of difference)

Highest precision -> smallest E -> E=-126 -> precison=-126-23=-149

Lowest precision -> largest E -> E=127 -> precison=127-23=104

Q10 Counting using FP (NO!!!!)

Below are two code fragments:

Code snippet 1:

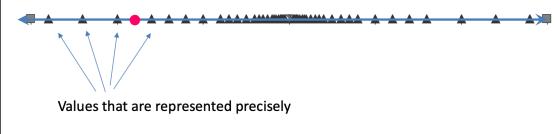
```
int count = 0;
for (int f = 0; f \le 10; f +=1) {
  count++;
```

On Snappy1, the "f"s 0.10000001490116119384765625000 0.20000002980232238769531250000 0.30000011920928955078125000000 0.40000005960464477539062500000 0.60000023841857910156250000000 0.700000047683715820312500000000 0.80000071525573730468750000000 0.9000009536743164062500000000 1.000000119209289550781250000000

Code snippet 2:

look like this:

```
int count = 0;
for (float f = 0.0; f \le 1.0; f += 0.1) {
   count++;
}
```

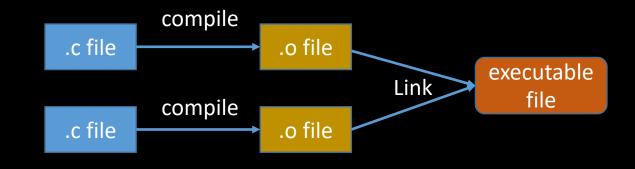

A. 11 vs. 11

B. 11 vs. 10

C. 10 vs. 10

D. 10 vs. 11

The computation on floats may not be precise:

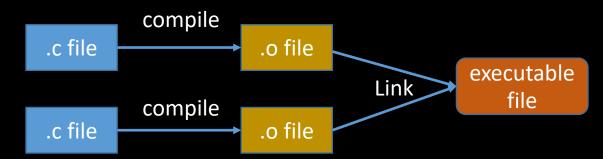


What if the result of computation is at •?

Rounding: Use the "closest" representable value x' for x.

Assessment 03

Q1 Make


What does this make rule do?

prog: main.o util.o

gcc main.o util.o -o prog

- A. It compiles object files main.o and util.o and generates the object file prog
- B. It links object files main.o and util.o and generates the executable file prog
- C. It compiles and links object files main.o and util.o and generates the executable file prog
- D. It links object files main.c and util.c and generates the object file prog

Q2 Make

Which of the following statements are **true** about the following make rule? main.o: main.c

gcc -c main.c

A. It compiles C source file main.c and generates the object file main.o.

- B. It links object files main.o and generates the executable file a.out.
- C. It compiles and links C source file main.c and generates the executable file a.out.
- D. Whenever file main.c has changed, running make will invoke gcc -c main.c according to this rule.
- E. Running make will always invoke gcc -c main.c according to this rule even if main.c has not changed.

Q3 C program organization

Which of the following statements are **true** about C program?

- A. A header file (*.h) includes the implementation of functions to be used in other source files.
- B. A header file (*.h) includes the signature (aka declaration) of functions to be used in other source files.
- C. Every source file (*.c) must contain a main function.
- D. Each C binary executable file is compiled from exactly one file.
- E. One can execute an object file, e.g. test.o by typing ./test.o

Q4 Bitwise op

What is the value of x^x? (Assuming variable x is unsigned int)

- A. It depends on x
- B. Always 0
- C. Always 1
- D. Always 0xfffffff

x	У	x XOR y
0	0	0
0	1	1
1	0	1
1	1	0

Q5 Bitwise op

What is the value of $x^{\sim}(x)$? (Assuming variable x is unsigned int)

- A. It depends on x
- B. Always 0
- C. Always 1
- D. Always 0xffffffff

~: flips all bits
For each bit in x:
if it is 0: in ~x it will be 1
if it is 1: in ~x it will be 0

		1
x	У	x XOR y
0	0	0
0	1	1
1	0	1
1	1	0

Q6 Shift

Consider the following code snippet,

```
char x = -2;
char y = x >> 1;
unsigned char z = ((unsigned char)x) >> 1
```

Q6.1 After executing the code snippet, what is the value of y (please write a decimal number as your answer)

Answer: -1

Q6.2 After executing the code snippet, what is the value of z (please write a decimal number as your answer)

Answer: 127

Q6 Shift

Consider the following code snippet,

```
char x = -2;
char y = x >> 1;
unsigned char z = ((unsigned char)x) >> 1
```

X: 111...10

Y (arithmetic shift): 111...11 => signed char => -1

Z (logical shift): 011...11 => unsigned char => 127

Arithmetic shift for signed numbers Logical shifting on unsigned numbers

Logical shift: Fill with 0's on left
 Arithmetic shift: Replicate msb on the left

Q7 Shift

Which value is the closest to 1<<20

- A. 1000
- B. 1 million
- C. 1 billion
- D. 2000
- E. 2 million
- F. 2 billion

- 1<<20
- 0..0100..000
- $2^{20} = (2^{10})^2 = 1024^2 \approx (10^3)^2 = 10^6$

Q8 Bit-wise ops

Variable x is of type unsigned int. Which of the following statements returns the most significant byte of x?

A. (char)x

least significant byte

- B. (char)(x >> 24)
- C. (char)(x | 0xff00000) least significant byte
- D. (char)(x & 0xff00000) 0x00
- E. None of the above

OxXXXXXXXX
0xFF000000
OxFFXXXXXX

0xXXXXXXXX & 0xFF000000 0xXX000000

x	у	x AND y
0	0	0
0	1	0
1	0	0
1	1	1

X	y	x OR y
0	0	0
0	1	1
1	0	1
1	1	1

Q9 Floating point (clear exp)

& is often used to mask off bits: b&0 = 0 but b&1 = b | can be used to turn some bits on: b|1=1

Suppose fi is an unsigned int whose bit pattern represents a single-precision floating point number, which of the following statements clears the exponent field of corresponding floating point number?

- A. fi = fi & 0x100fffff
- B. fi = fi & 0x807fffff
- C. fi = fi & 0x80ffffff
- D. fi = fi & (0xff << 23) fi & 0111 1111 1000 00..00
- E. fi = fi | (Oxff << 23) fi | 0111
- fi | 0111 1111 1000 00.. 00
- F. $fi = fi \& (\sim (0xff << 23)) fi \& 1000 0000 0111 11.. 11)$
 - G. fi = fi & (~(1<<23))
- fi & 1111 1111 0111 11.. 11

- clear the exponent field
- fi & mask
- mask = 1000 0000 0111 1..1
 - mask = 0x807fffff
 - mask = ~(0xff<<23) = ~0x7f800000 = 0x807fffff

Q10 Local variable

- Consider the following code snippet, addOne
 Which of the following statements are true:
- A. Running test() will result in assertion failure.
- B. Running test() will pass the assertion correctly.

- 1: void addOne(int val)
 2: {
 3: val++;
 4: }
 5:
 6: void test()
 7: {
 8: int val = 1;
 9: add(val);
 10: assert(val == 2);
 11:}
- C. The addOne function argument val and the local variable val refer to the same variable
- D. The addOne function argument val and the local variable val are unrelated.
- E. The program will pass test correctly after moving line 8 out of the test function, making val a global variable.
- F. The program will fail the assertion after moving line 8 out of the test function, making val a global variable.

Q10 Local variable

• E&F ask what happen if val is globally defined:

1 int val = 1; void addOne(int val) 2 3 $\sim \{$ val++; 5 void test() 6 Ł 7 \sim addOne(val); 8 assert(val == 2); 9 10

- Nothing changes: the global val is shadowed by the definition in function argument
 - The two vals are still unrelated

Getting started with GDB

How to use it and why you should

What is debugging?

- Just because your code compiles doesn't mean it does what you want
 - It could loop forever, crash, or otherwise just not work correctly
 - Writing tests helps you find out that your code doesn't work correctly, but you
 might need more help figuring out why your code doesn't correctly
- A debugger can help you by providing a number of helpful tools
 - In this class we will use gdb, the GNU debugger

What is debugging?

• GDB lets you

- Run your program
- Stop your program at a certain point
- Print out the values of certain variables at that point
- Examine what your program is doing
- Change things within your program to see if it helps

How do you use GDB?

- Add the -g flag when you compile with gcc
 - This flag tells gcc to include debugging information that gdb can use
 - gcc -g main.c -o myprogram
- Run your program with gdb
 - Run gdb ./myprogram
 - You will then be given an interactive shell where you can issue commands to gdb
 - Run your program, look at variables, etc., using the commands
 - To exit the program just type quit (or just q)

Some common gdb commands

Demo: wget https://raw.githubusercontent.com/DingDTest/Recitation-examples/main/main.c

- help
 - Gdb provides online documentation. Just typing *help* will give you a list of topics. Or just type *help command* and get information about any other command.

Short Name	Long Name	What do it do?
r	run	Begins executing the program – you can specify arguments after the word run
_	step the program one	Execute the current source line and stop before the next source line, going inside functions and running their code too
at a time n	next	Continue until the next source line, counting called functions as a single line
р	print	Prints the value of an expression or variable
I	list	Prints out source code
q	quit	Exit gdb 39

Some more advanced gdb commands

Set the breakpoint at the beginning of the function

Short Name	Long Name	What do it do?
b	break	Sets a breakpoint at a specified location (either a <i>function</i> name or <i>line number</i>)
С	continue	Continues executing after being stopped by a breakpoint
bt	backtrace	Prints out information on the call stack, i.e. where in the program's execution it is being stopped at
f	frame	Prints information on the current frame / allows you to change frames
i	info	Prints out helpful information (e.g. info args and info locals)

Debugging an infinite loop

- Set a breakpoint inside the loop
 - Or just run it and hit control-c (signal)
- *list* the code
 - This is so you can see the loop condition
- *step* over the code
- Check the values involved in the loop condition
 - Are they changing the right way? Are the variables changing at all?

Debugging a crash

- *run* your program
- Use *bt* to see the call stack
 - You can also use *where* to see where you were last running
- Use *frame* to go to where your code was last running
- Use *list* to see the code that ran
- Check the locals and args to see if they are bad