
CSO-Recitation 03
CSCI-UA 0201-007

R03: Assessment-01 & Debugging with gdb

Today’s Topics

• Weekly assessment-02
• Weekly assessment-03
• Debugging with gdb

2

Assessment 02
Answers and explanations

8

Q1 64-bit processor

Which of the following statements
are true for a 64-bit processor?
A. its registers are 64-bit in length.
B. it only supports signed and

unsigned integers of exactly 64-
bit in length.

C. each memory address stores 64-
bit of data.

D. each memory address is
represented by a 64-bit unsigned
int.

9

Q2 Normalized Exponential Representation

Which of the following is a normalized exponential representation in
either binary or decimal?

A. (0.11)2*21

B. (1.00)2*2-10

C. (10.11)2

D. (78.5) 10*210

E. (7.85)10*101

Binary:

Normalized exponential representation:

+ M * 2E, where 1<=M<2, M=(1.F)2

Decimal:

Normalized Scientific notation:

+ M * 10E, where 1<=M<10

10

Q3 IEEE Floating Point

What's the value of the 32-bit IEEE floating point with bit pattern
0xc0600000? (Give your answer in the form of regular decimal
fractional notation xxx.yyy with no leading nor trailing zeros)
• -3.5

• 0xc0600000
• 1100 0000 0110 0000 0000 0000 0000 0000
• S=1 -> -M*2E

• exp=(10000000)2 =27 = 128
• E= exp-bias = exp-127 =1
• M=(1.1100…000)2 = 20 +2-1 + 2-2 = 1.75
• -M*2E = -1.75*21 = -3.5

11

Q4 Signed/Unsigned int

Given a 32-bit bit pattern 0xffffffff, what is the value if we are to interpret the bit pattern
as an unsigned int or signed int?
A. 231

B. 232

C. 231 -1
D. 232 -1
E. -1
F. - 231

G. - 232

H. - 231 +1
I. - 2-32 +1
J. None of the above

12

Unsigned: −"#$%2#$% + ∑)*+#$, ")2)

Signed: ∑)*+#$% ")2)

0xffffffff: all ") = 1, 0 = 32

Q5 IEEE Floating Point

Given a 32-bit bit pattern 0xffffffff, what is the value if we are to
interpret the bit pattern as an IEEE 32-bit floating point number.
A. NaN
B. ∞
C. −∞
D. 0
E. ≈ 2)*+
F. ≈ −2)*+
G. None of the above

• 0xffffffff
• 1111 1111 1111 1111 11….11
• Special values

13

Q6 IEEE floating point 2

Which of the following statements are true about IEEE floating points?

A. The number zero is represented in normalized encoding

B. The number zero is represented in denormalized encoding

C. All denormalized numbers are closer to zero than normalized numbers

D. Some but not all denormalized numbers are closer to zero than
normalized numbers.

E. The exponent value (E) in denormalized encoding is 1-127 = -126.

F. The exponent value (E) in denormalized encoding is 0-127 = -127.

14

Normalized: Denormalized:

Q7 FP (smallest positve)

What's the bit-pattern of the smallest positive single precision IEEE
floating point number?
A. 0x70000001
B. 0x80000001
C. 0x00000001
D. 0x0007ffff
E. 0x7f800000
F. 0x7f7fffff

15

Sign = 0
(positive)

Smallest: denormalized & smallest M

Smallest M <=> smallest F 00..01

denormalized : exp = 0000 0000

Q8 FP (largest positve)

What's the bit-pattern of the largest positive single precision IEEE
floating point number? (\infty∞ does not count)

A. 0x70000001

B. 0x80000001

C. 0x00000001

D. 0x0007ffff

E. 0x7f800000

F. 0x7f7fffff

16

Largest M <=> largest F 111…1

Largest E: exp = 1111 1110

Sign = 0
(positive)

Q9 FP (precision)

What the highest and lowest precision for IEEE single precision floating
points?
A. 2^{−149} and 2^{105}
B. 2^{-150} and 2^{104}
C. 2^{-149} and 2^{104}
D. 2^{-150} and 2^{105}
E. 2^{-23} and 2^{23}
F. 2^{-126} and 2^{127}
G. 2^{-127} and 2^{127}

17

!. #$ …#&' 2 ∗ 2* = ! ∗ 2, +.
/0$

&'
#/ ∗ 2,1/

It’s precision is E-23 (the smallest change you can
make is flipping b23 which gives 2,1&' of difference)

Highest precision -> smallest E -> E=-126 ->
precison=-126-23=-149

Lowest precision -> largest E -> E=127 ->
precison=127-23=104

Q10 Counting using FP (NO!!!!)

Below are two code fragments:
Code snippet 1: Code snippet 2:

A. 11 vs. 11
B. 11 vs. 10
C. 10 vs. 10
D. 10 vs. 11

18

The computation on floats may not be precise:

0.000000000000000000000000000000
0.100000001490116119384765625000
0.200000002980232238769531250000
0.300000011920928955078125000000
0.400000005960464477539062500000
0.500000000000000000000000000000
0.600000023841857910156250000000
0.700000047683715820312500000000
0.800000071525573730468750000000
0.900000095367431640625000000000
1.000000119209289550781250000000

On Snappy1, the “f”s
look like this:

Assessment 03

19

Q1 Make

What does this make rule do?
prog: main.o util.o

gcc main.o util.o -o prog
A. It compiles object files main.o and util.o and generates the object file prog
B. It links object files main.o and util.o and generates the executable file prog
C. It compiles and links object files main.o and util.o and generates the executable

file prog
D. It links object files main.c and util.c and generates the object file prog

.c file

.c file

.o file

.o file

executable
file

compile

compile
Link

20

Q2 Make

Which of the following statements are true about the following make rule?
main.o: main.c

gcc -c main.c
A. It compiles C source file main.c and generates the object file main.o.
B. It links object files main.o and generates the executable file a.out.
C. It compiles and links C source file main.c and generates the executable

file a.out.
D. Whenever file main.c has changed, running make will invoke gcc -c

main.c according to this rule.
E. Running make will always invoke gcc -c main.c according to this rule even

if main.c has not changed.

21

.c file

.c file

.o file

.o file

executable
file

compile

compile
Link

Q3 C program organization

Which of the following statements are true about C program?
A. A header file (*.h) includes the implementation of functions to be used in other

source files.
B. A header file (*.h) includes the signature (aka declaration) of functions to be

used in other source files.
C. Every source file (*.c) must contain a main function.
D. Each C binary executable file is compiled from exactly one file.
E. One can execute an object file, e.g. test.o by typing ./test.o

22

Q4 Bitwise op

What is the value of x^x? (Assuming variable x is unsigned int)
A. It depends on x
B. Always 0
C. Always 1
D. Always 0xffffffff

26

Q5 Bitwise op

What is the value of x^(~x)? (Assuming variable x is unsigned int)
A. It depends on x
B. Always 0
C. Always 1
D. Always 0xffffffff

27

~: flips all bits
For each bit in x:

if it is 0: in ~x it will be 1
if it is 1: in ~x it will be 0

Q6 Shift

Q6.1 After executing the code snippet, what is the value of y (please write a
decimal number as your answer)
Answer: -1
Q6.2 After executing the code snippet, what is the value of z (please write a
decimal number as your answer)
Answer: 127

28

Q6 Shift

X: 111…10
Y (arithmetic shift): 111…11 => signed char => -1
Z (logical shift): 011…11 => unsigned char => 127

29

Q7 Shift

Which value is the closest to 1<<20
A. 1000
B. 1 million
C. 1 billion
D. 2000
E. 2 million
F. 2 billion

• 1<<20
• 0..0100..000

• 220 = (210)2 = 10242 ≈ (103)2 = 106

30

Q8 Bit-wise ops

Variable x is of type unsigned int. Which of the following statements
returns the most significant byte of x?
A. (char)x
B. (char)(x >> 24)
C. (char)(x | 0xff000000)
D. (char)(x & 0xff000000)
E. None of the above

least significant byte

0x00

least significant byte

0xXXXXXXXX
| 0xFF000000

0xFFXXXXXX

0xXXXXXXXX
& 0xFF000000

0xXX000000

31

Q9 Floating point (clear exp)

Suppose fi is an unsigned int whose bit pattern represents a single-precision
floating point number, which of the following statements clears the
exponent field of corresponding floating point number?
A. fi = fi & 0x100fffff
B. fi = fi & 0x807fffff
C. fi = fi & 0x80ffffff
D. fi = fi & (0xff<<23)
E. fi = fi | (0xff<<23)
F. fi = fi & (~(0xff<<23))
G. fi = fi & (~(1<<23))

• clear the exponent field
• fi & mask
• mask = 1000 0000 0111 1..1
• mask = 0x807fffff
• mask = ~(0xff<<23)

= ~0x7f800000
= 0x807fffff

fi & 0111 1111 1000 00.. 00
fi | 0111 1111 1000 00.. 00

& is often used to mask off bits: b&0 = 0 but b&1 = b
| can be used to turn some bits on: b|1=1

fi & 1000 0000 0111 11.. 11

fi & 1111 1111 0111 11.. 11

32

Q10 Local variable

• Consider the following code snippet,
Which of the following statements are true:

A. Running test() will result in assertion failure.
B. Running test() will pass the assertion correctly.
C. The addOne function argument val and the local variable val refer to the same

variable
D. The addOne function argument val and the local variable val are unrelated.
E. The program will pass test correctly after moving line 8 out of the test function,

making val a global variable.
F. The program will fail the assertion after moving line 8 out of the test function,

making val a global variable.

33

addOne

Q10 Local variable

• E&F ask what happen if val is globally defined:

• Nothing changes: the global val is shadowed by the definition in
function argument
• The two vals are still unrelated

34

Getting started with GDB
How to use it and why you should

35

What is debugging?

• Just because your code compiles doesn’t mean it does what you want
• It could loop forever, crash, or otherwise just not work correctly
• Writing tests helps you find out that your code doesn’t work correctly, but you

might need more help figuring out why your code doesn’t correctly
• A debugger can help you by providing a number of helpful tools
• In this class we will use gdb, the GNU debugger

36

What is debugging?

• GDB lets you
• Run your program
• Stop your program at a certain point
• Print out the values of certain variables at that point
• Examine what your program is doing
• Change things within your program to see if it helps

37

How do you use GDB?

• Add the -g flag when you compile with gcc
• This flag tells gcc to include debugging information that gdb can use
• gcc -g main.c -o myprogram

• Run your program with gdb
• Run gdb ./myprogram
• You will then be given an interactive shell where you can issue commands to

gdb
• Run your program, look at variables, etc., using the commands

• To exit the program just type quit (or just q)

38

Some common gdb commands

• help
• Gdb provides online documentation. Just typing help will give you a list of

topics. Or just type help command and get information about any other
command.

Short
Name

Long Name What do it do?

r run Begins executing the program – you can specify arguments after the word
run

s step Execute the current source line and stop before the next source line, going
inside functions and running their code too

n next Continue until the next source line, counting called functions as a single line
p print Prints the value of an expression or variable
l list Prints out source code
q quit Exit gdb

step through the program one
line at a time

39

Demo: wget https://raw.githubusercontent.com/DingDTest/Recitation-examples/main/main.c

Some more advanced gdb commands

Short
Name

Long Name What do it do?

b break Sets a breakpoint at a specified location (either a function name or line
number)

c continue Continues executing after being stopped by a breakpoint
bt backtrace Prints out information on the call stack, i.e. where in the program's

execution it is being stopped at
f frame Prints information on the current frame / allows you to change frames
i info Prints out helpful information (e.g. info args and info locals)

Set the breakpoint at the beginning
of the function

40

Debugging an infinite loop

• Set a breakpoint inside the loop
• Or just run it and hit control-c (signal)

• list the code
• This is so you can see the loop condition

• step over the code
• Check the values involved in the loop condition
• Are they changing the right way? Are the variables changing at all?

41

Debugging a crash

• run your program
• Use bt to see the call stack
• You can also use where to see where you were last running

• Use frame to go to where your code was last running
• Use list to see the code that ran
• Check the locals and args to see if they are bad

42

