
CSO-Recitation 05
CSCI-UA 0201-007

R05: Assessment 03 & Pointers & Arrays

Today’s Topics

• Assessment 04
• Pointers
• Arrays

2

Assessment 04

3

Q1 Pointers and arrays

Given variable definition char *c[10]; what is the type of the expression
c[0]+1?

A. char **

B. char *

C. char

D. none of the above

char *c[10]:
• c is an array of pointer to char

• type of c: char **
• c[0] ==*c

• type of c[0]: char *
• c[0]+1 == *(c+1) ?
• c[1] ==*(c+1)
• c[0]+1 == *c+1

• also pointer arithmetic
• type of c[0]+1: char *

e.g: [“cso”, “recitation”, …, “TA”]
• c[0]+1 is char*, then what is

the value of *(c[0] + 1)?

5

c[0]: the pointer to “cso”
c[0] + 1: points to?

*(c[0] + 1) = ‘s’

Q2 Pointers and arrays

Given variable definition char *c[10]; what is the type of the expression
c+1?
A. char **
B. char *
C. char
D. none of the above

c+1 == &c[1]

6

Q3 Pointers and arrays

Given variable definition char c[10]; what is the type of the expression
c[0]+1?
A. char **
B. char *
C. char
D. none of the above

char c[10]:
• c is an array of char

• type of c: char *
• c[0] ==*c

• type of c[0]: char
• c[0]+1 == *c+1

• type of c[0]+1: char

• e.g. c=[’c’, ‘s’, ‘o’, …’r’]
• c[0]==‘c’
• c[1]==‘s’
• c[0]+1==‘d’

7

Q4 Pointers and arrays

Given variable definition char c[10]; what is the type of the expression
c+1?
A. char **
B. char *
C. char
D. none of the above

c+1 == &c[1]

8

Q5 Pointer casting

What's the output of the following code fragment (assuming it runs on
a 64-bit little endian machine):
A. -1 -1

B. -2 -2

C. -1 -2

D. -2 -1

E. Segmentation fault

F. None of the above

• x:

10

0xff

0xff

0xff

0xff

0xff

0xff

0xff

0xfelower address
y

y[0]

y[1]

Q6 Pointer arithmetic

Here's a C code fragment. In order for the above code fragment to output 1 2
10, which of 1 line of code that you should put at Line-3?

A. p[0] = 10;

B. p[1] = 10;

C. p[2] = 10;

D. *(p) = 10;

E. *(p+1) = 10;

F. *(p+2) = 10;

G. p++;

H. p--;

13

0x00

0x00

0x00

0x03

0x00

0x00

0x00

0x02

0x00

0x00

0x00

0x01

p

x[0]

x[1]

• x:
x[2]

(Graph drawn assuming little endian, but the

result is the same for large endian too)

p+1

Q7 ASCII

Suppose char c stores some ASCII character. What could be its value
interpreted as a signed 1-byte integer?

A. any integer in the range [-128,127]

B. any integer in the range [0, 255]

C. any integer in the range [0, 127]

D. any integer in the range [-1, 255]

• ASCII characters:
• use one byte (with MSB=0) to

represent each character

• if it is interpreted as a signed 1-byte
int:
• smallest: 00000000 -> 0
• largest: 011111111 -> 127

Q8 String

1: char c = 'a';
2: int x = strlen(&c);
What's the value of x after the above two lines of code?
A. Compilation error at line 1
B. Compilation error at line 2
C. x = 0
D. x = 1
E. x = 2
F. x = 3
G. x's value is undefined (i.e. could be any int value).

• What is C’s solution to determine string length?
• Programmers are expected to store a NULL

character at the end of the string (by
convention)

• Count the #char until ‘\0’

Q9 String

1: char c = ‘\0';
2: int x = strlen(&c);
What's the value of x after the above two lines of code?
A. Compilation error at line 1
B. Compilation error at line 2
C. x = 0
D. x = 1
E. x = 2
F. x = 3
G. x's value is undefined (i.e. could be any int value).

• What is C’s solution to determine string length?
• Programmers are expected to store a NULL

character at the end of the string (by
convention)

• Count the #char until ‘\0’

Q10 String

1: int a = 0x00414243;
2: int x = strlen((char *)&a);
What's the value of x after the above two lines of code?
A. Compilation error at line 1
B. Compilation error at line 2
C. x = 0
D. x = 1
E. x = 2
F. x = 3
G. x's value is undefined (i.e. could be any int value).

• What is C’s solution to determine string length?
• Programmers are expected to store a NULL

character at the end of the string (by
convention)

• Count the #char until ‘\0’
• (char *)&a -> casting to char *

Exercise:
• what if `int x = strlen(&a);` ?
• what if ` int a = 0x01414243;`?

Pointers
A variable that stores a memory address

18

What are pointers?

• They are variables that store addresses
• Pointers can have different types, depending on what they point to

• But they remain the same size – for us on a 64-bit system, 8 bytes (64 bits)

• If I want the value of a variable var -> var

• If I want the address of a variable var -> &var
• If var is a pointer, then I can get the value of the variable that var points to -> *var

Type Value Address
int

float

char

pointer

an integer number memory address

memory address

memory address

memory addressmemory address

a character/byte

a floating point number

19

What are pointers?

• They are variables that store addresses
• Pointers can have different types, depending on what they point to

• But they remain the same size – for us on a 64-bit system, 8 bytes (64 bits)

• Two primary operations
• & - called “reference”

• Gets the address of a variable / array element
• You perform this to get the value for a pointer

• * - called “de-reference”
• Gets the value located at a memory address
• You perform this on the pointer

20

How do you use pointers?

• Say you have a variable var
• int var = 10;

• You can make a pointer called ptr using this code
• int *ptr;

• ptr can be set to point to var with the reference operator
• ptr = &var;

• The value of ptr is now the address of var, not its value
• To get the value, de-reference:

• *ptr //this equals to 10
• *ptr = 5; // this sets var to 5

21

Pointer types

• Why do we need pointer types?
• Without it, making mistakes like de-referencing a number by accident would

be common
• Without it, pointer arithmetic wouldn’t work

• What is pointer arithmetic?
• If you have a pointer called ptr, the value of ptr+1 is based on the type of ptr

• If ptr is a char*, then ptr+1 is the memory address of next char after ptr
• If ptr is an int*, then ptr+1 is the memory address of next int after ptr

• ptr+n means “start at ptr, and go forward as many bytes as n copies of what
ptr points to take up”

22

Function arguments and pointers

• In C, arguments are passed by value
• Means that when you call a function, the arguments are copied from the

caller to the function’s stack frame
• This means that if a function modifies one of its arguments, it is not modified

for whoever called the function
• If you want to pass a reference, you must use pointers
• Then the function can modify the variable by dereferencing the pointer

23

Arrays
Contiguous, homogenous data

24

What are arrays?

• Basically, they are chunks of memory that hold a number of elements of
the same data type
• This memory is contiguous, that is, the elements are all touching
• You can define an int array like this

• int my_array[5];
• This will make an array of 5 ints (20 bytes)
• You can initialize the array as follows:

• int my_array[5] = {1, 2, 3, 4, 5};
• You can also set it to all zeroes using int my_array[5]={0};

• You can index with the [] operator
• my_array[0] gets the first element of my_array
• my_array[0] = 5 sets the first elelment of my_array to 5

25

Defining an array

• int arr[5];
• The value of an array is the address of its first element
• The value of arr is 0x7F00

• arr==&arr[0]

• Let a pointer points to the 1st element of this array
• int *p = arr;

• int *p = &arr[0];

• Array and pointer can be syntactically equivalent
• *p == p[0]==arr[0]
• *arr ==arr[0]
• *(arr+2) ==arr[2]

?

?

?

?

?

?

?

?

?

?

? 0x7F00

0x7F04

0x7F08

0x7F0C

0x7F10

0x7F11
0x7F12

0x7F13

0x7F14
0x7F15
0x7F16

26

Pointer and array

• One difference between an array name and a pointer
• A pointer is a variable

• p = arr; / p++; are legal
• But an array name is not a variable..

• cannot write things like arr++; / arr=p; (illegal)
• When an array name is passed to a function,
• What it passed is the address of the 1st element
• Oftentimes we use a pointer type to accept it

• Within the called function, this argument is a local variable, and an array name parameter
is a pointer, that is, a variable containing an address

• But we need to also pass the number of elements in this array to function

27

Indexing an array

• int arr[5];
• Arrays can be index like so
• arr[2] = 5;
• This will set the third element of arr to 5
• This is the same as *(arr + 2) = 5;

• Which is to say, this is done by taking the value of arr, 0x7F00, and
adding 2 to it according to pointer arithmetic

• The size of int is 4, so we are going 8 bytes passed arr, 8 + 0x7F00 =
0x7F08

?

?

?

?

?

?

?

?

5

?

?
0x7F00

0x7F04

0x7F08

0x7F0C

0x7F10

0x7F11

0x7F12

0x7F13

0x7F14

0x7F15
0x7F16

28

Pointers to pointers (Pointer arrays)

• Since pointers are variable themselves, they can be stored in arrays
just as other variables can
• char *a[2];

• Let a pointer points to the 1st element of this array (of pointers)
• char **p = &a[0]; / char **p=a;

• An array of pointers

• Think about what can this do?

30

