CSO-Recitation O5
CSCI-UA 0201-007

RO5: Assessment 03 & Pointers & Arrays

Today’s Topics

* Assessment 04
e Pointers
* Arrays

Assessment 04

Q1 Pointers and arrays

Given variable definition char *c[10]; what is the type of the expression
c[0]+17

A.

B.
C.
D

char **

char *

char
none of the above

char *c[10]:
e cisan array of pointer to char

* type of c: char ** e.g: [“cso”, “recitation”, ..., “TA”]
 ¢[0] ==*c e c[0]+1is char*, then what is
the value of *(c[0] + 1)?
Ot =="{c+1) 7 c[0]: the pointer to “cso”
e c[1] ==*(c+1) c[0] + 1: points to?
e ¢[0]+1 == *c+1 *(c[0]+1) =S’

e also pointer arithmetic
* type of c[0]+1: char *

Q2 Pointers and arrays

Given variable definition char *c[10]; what is the type of the expression
c+1?

A. char **
c+1 == &c[1]

. char *

B
C. char
D. none of the above

e e.g.c=[c, ‘s, ‘0, .. r]
Q3 Pointers and arrays ! e

¢ c[O]+1==d

Given variable definition char c[10]; what is the type of the expression
c[0]+17

A. char ** char c[10]:
" c is an array of char
B. char typeofc:char*
——%k
C. char c[0] ==%c
type of c[0]: char
D. none of the above * c[0]+1 == *c+1

type of c[0]+1: char

Q4 Pointers and arrays

Given variable definition char c[10]; what is the type of the expression
c+1?

A. char **
c+1 == &c[1]

. char *

B
C. char
D. none of the above

Q5 Pointer casting

What's the output of the following code fragment (assuming it runs on
a 64-bit little endian machine):

A.

Mmoo 6w

-1-1
-2 -2
-1-2

. -2-1

Segmentation fault

None of the above

lower address

long long X = -2;

int
Y:

printf("%d %d\n",

Oxff
Oxff
Oxff
Oxff
Oxff
Oxff
Oxff
Oxfe

|

*Y;
(int *)&x;

)

- y([1]

J\

- y([O]

y[O

1+

ylill):

10

: int x[3] = {1, 2, 3};

Q6 Pointer arithmetic Bk

: printf("%d %d %d\n", x[0], x[1], x[2]):

Here's a C code fragment. In order for the above code fragment to output 1 2

10, which of 1 line of code that you shCmmeweass L ine-3?

AT _ . . . (Graph drawn assuming little endian, but the
A' po - 10; X: result is the same for large endian too)
8. pl1] = 10; o
C. pi2] = 10; oo | -
D. *(p) = 10: OxOO

o)

E. (p+1) - 10; _ - X[1]

A 0x00
. *(p+2) = 10; oo |
G. p+t; o0 |
H peo o

Q7 ASCII

Suppose char c stores some ASCII character. What could be its value

interpreted as a sighed 1-byte integer?
-128,127]
0, 255]
0, 127]
-1, 255]

A.
B.
C.
D. anyintegerint

any integerint
any integerint
any integerint

he range
he range
he range

he range

* ASCII characters:
e use one byte (with MSB=0) to

represent each character

e ifitisinterpreted as a signed 1-byte

Int:
 smallest: 00000000 -> 0
* largest: 011111111 -> 127

Q8 String

1: char ¢ = "a
2: int x = strlen(&c);
What's the value of x after the above two lines of code?

Compllatlon error at line 1 * Whatis C’s solution to determine string length?

Compilation error at line 2 * Programmers are expected to store a NULL
character at the end of the string (by

x=0 convention)

Xx=1 * Count the #char until \0’
X=2

X=3

OGmMmMmoOnNn o>

x's value is undefined (i.e. could be any int value).

Q9 String

1: char ¢ = "\0"
2: int x = strlen(&c);
What's the value of x after the above two lines of code?

Compllatlon error at line 1 * Whatis C’s solution to determine string length?

Compilation error at line 2 * Programmers are expected to store a NULL
character at the end of the string (by

x=0 convention)

Xx=1 * Count the #char until \0’
X=2

X=3

G mMmMmon o>

x's value is undefined (i.e. could be any int value).

Q10 String S

« whatif ‘int x = strlen(&a);" ?
e whatif int a = 0x01414243;?

1: int a = 0x00414243;
2: int x = strlen((char *)&a);
What's the value of x after the above two lines of code?

A. Compllatlon error at line 1 * Whatis C’s solution to determine string length?
B. Comp”ation error at line 2 * Programmers are expected to store a NULL
_ character at the end of the string (by
C. x=0 convention)
D. x=1 * Count the #char until \0’
e (char *)&a -> casting to char *
E. x=2 (char) 8
F. x=3
G.

x's value is undefined (i.e. could be any int value).

Pointers

A variable that stores a memory address

18

What are pointers?

* They are variables that store addresses

* Pointers can have different types, depending on what they point to
e But they remain the same size — for us on a 64-bit system, 8 bytes (64 bits)

int an integer number memory address

float a floating point number memory address

char a character/byte memory address

pointer memory address memory address

* |f | want the value of a variable var -> var

* |f | want the address of a variable var -> &var

* If varis a pointer, then | can get the value of the variable that var points to -> *var

19

What are pointers?

* They are variables that store addresses

* Pointers can have different types, depending on what they point to
e But they remain the same size — for us on a 64-bit system, 8 bytes (64 bits)

* Two primary operations

* & - called “reference”
* Gets the address of a variable / array element
* You perform this to get the value for a pointer
* * - called “de-reference”
* Gets the value located at a memory address
* You perform this on the pointer

20

How do you use pointers?

e Say you have a variable var
* intvar =10;

* You can make a pointer called ptr using this code
* int *ptr;

* ptr can be set to point to var with the reference operator
* ptr = &var;

* The value of ptr is now the address of var, not its value

* To get the value, de-reference:
* *ptr //this equals to 10
e *ptr=75;// thissetsvarto5

21

Pointer types

* Why do we need pointer types?

* Without it, making mistakes like de-referencing a number by accident would
be common

* Without it, pointer arithmetic wouldn’t work

* What is pointer arithmetic?

* |f you have a pointer called ptr, the value of ptr+1 is based on the type of ptr
* If ptris a char*, then ptr+1 is the memory address of next char after ptr
e If ptris anint*, then ptr+1 is the memory address of next int after ptr

* ptr+n means “start at ptr, and go forward as many bytes as n copies of what
ptr points to take up”

22

Function arguments and pointers

* In C, arguments are passed by value

* Means that when you call a function, the arguments are copied from the
caller to the function’s stack frame

* This means that if a function modifies one of its arguments, it is not modified
for whoever called the function

* If you want to pass a reference, you must use
* Then the function can modify the variable by dereferencing the pointer

23

Arrays

Contiguous, homogenous data

24

What are arrays?

* Basically, they are chunks of memory that hold a number of elements of
the same data type

* This memory is contiguous, that is, the elements are all touching

* You can define an int array like this
e int my_array[5];
* This will make an array of 5 ints (20 bytes)
* You can initialize the array as follows:
* int my_array[5] =11, 2, 3, 4, 5};
* You can also set it to all zeroes using int my_array[5]={0};
* You can index with the [] operator
 my_array[0] gets the first element of my_array
 my_array[0] = 5 sets the first elelment of my_array to 5

25

Defining an array

Ox7F16
0x7F15

Ox7F14
0x7F13

* int arr[5];

* The value of an array is the address of its first element

e The value of arr is Ox7F00
 arr==&arr[0]

* Let a pointer points to the 15t element of this array

0x7F12
0x7F11

-J -J -J -J -J -J

Ox7F10

e int ¥n = .
INt .p arr, 0x7FOC

e int *p = &arr[0];
. . . Ox7F08
* Array and pointer can be syntactically equivalent

o *p —— p[O]==arr[O] Ox7F04
e *arr ==arr[0] 0x7F00

e *(arr+2) ==arr[2]

26

Pass array to function via pointer

// multiply every array element by 2

Pointer and array RPRGA

for (int 1 = ©; 1 < n; i++) {
a[i] *= 2; // (*(a+i)) *= 2;
}
}

* One difference between an array hame and oI

int a[2] =4{1, 2};

. . . multiply2({a,| 2);
* A pointer is a variable for Gt 42 011 < 23 144) ¢
° p = arr; / p++’. are |ega| printf(“a[%d]=%d”, i, a[i]);

}

* But an array name is not a variable.. }
* cannot write things like arr++; / arr=p; (illegal)
* When an array name is passed to a function,
 What it passed is the address of the 15t element

e Oftentimes we use a pointer type to accept it
* Within the called function, this argument is a local variable, and an array name parameter
is a pointer, that is, a variable containing an address

* But we need to also pass the number of elements in this array to function

27

Indexing an array

Ox7F16
0x7F15

Ox7F14
0x7F13

* int arr[5];

* Arrays can be index like so
e arr[2] = 5;
* This will set the third element of arrto 5

0x7F12
0x7F11

-J -J -J -J -J -J

* This is the same as *(arr + 2) = 5; Ox7F10
* Which is to say, this is done by taking the value of arr, 0x7F00, and e
adding 2 to it according to pointer arithmetic OxTFO8
X
* The size of int is 4, so we are going 8 bytes passed arr, 8 + 0x7F00 =
Ox7F08 Ox7F04
Ox7F00

28

Pointers to pointers (Pointer arrays)

 Since pointers are variable themselves, they can be stored in arrays
just as other variables can

e char *a[2];

* Let a pointer points to the 15t element of this array (of pointers)
e char **p = &a[0]; / char **p=a;

* An array of pointers
 Think about what can this do?

30

