
CSO-Recitation 06
CSCI-UA 0201-007

R06: Assessment 05 & Strings & Linked list

Today’s Topics

• Assessment 05
• Strings
• Linked list

2

Assessment 05

3

Q1 Basic C

Below are 4 C source files and their contents.
Q1.1 foo1.c
Which of the following statements are true?
A. The command gcc foo1.c creates a binary executable

file called a.out
B. The command gcc -c foo1.c creates a non-executable

object file called foo1.o
C. The command gcc foo1.c results in an error.
D. After executing line 3, variable g has value 1.
E. After executing line 3, variable g could have any value.

4

Q2 Static and extern

Q2.1 foo2.c
Which of the following statements are true?
A. The command gcc foo2.c creates a binary executable file called a.out.
B. The command gcc -c foo2.c creates a non-executable object file

called foo2.o.
C. The command gcc foo2.c results in an error.
D. The command gcc foo2.c bar1.c creates a binary executable file

called a.out.
E. The command gcc foo2.c bar1.c results in an error.
F. The command gcc foo2.c bar2.c creates a binary executable file

called a.out.
G. The command gcc foo2.c bar2.c results in an error.

5

Q2 Static and extern

Q2.2
Suppose this command gcc foo2.c bar1.c bar2.c generates
executable a.out, which of the following is true about executing
a.out?
A. The global variable g in bar1.c and bar2.c have the same

underlying same memory location.
B. The global variable g in bar1.c and bar2.c have different

underlying same memory locations.
C. The variable g in foo2.c refers to the global variable g defined

in bar1.c.
D. The variable g in foo2.c refers to the global variable g defined

in bar2.c.
E. The command gcc foo2.c bar1.c bar2.c would result in an error.

6

Q3 Static for local variable

The following shows the code for function my_func
Q3.1 basic
A. Local variable c1 is allocated upon each invocation of my_func and de-allocated

upon its return.
B. Local variable c2 is allocated upon each invocation of my_func and de-allocated

upon its return.
C. Local variable c1 and c2 always have the same value right before the return

of my_func.
D. Local variable c1 has scope within function my_func and cannot be referred to

from outside of this function.
E. Local variable c2 has scope within function my_func and cannot be referred to

from outside of this function.
When “static” prefix local variables:
• Initialized once, never deallocated
• Any change persists across function invocations
• like a global variable, except with local scope 7

Q3 Static for local variable

Suppose one executes the following code snippet:
my_func(10);
my_func(20);

Which of the following statements are true?
A. Right before returning from my_func(20), variable c1 has value 20.
B. Right before returning from my_func(20), variable c1 has value 30.
C. Right before returning from my_func(20), variable c2 has value 20.
D. Right before returning from my_func(20), variable c2 has value 30.

8

Execution Breakdown

• c1 is allocated and assigned with value 0 // c1=0
• my_func(10)
• c2 allocated and assigned with value 0 // c2=0
• c1+=10 // c1=10
• c2+=10 // c2=10
• Function return (c2 is de-allocated)

• my_func(20)
• c2 allocated and assigned with value 0 // c2=0
• c1+=10 // c1=30
• c2+=20 // c2=20

9

Q4 register

After x86 CPU executes instruction movq $0x12345678, %rax, which of the
following is true?
A. The higher order 4-byte of register %rax are all zeros.
B. The higher order 4-bytes of register %rax remain the same as before the

movq instruction is executed.
C. Register %eax has value 0x00000000
D. Register %eax has value 0x12345678
E. Register %eax is not changed by the movq instruction.
F. Register %ax has value 0x1234
G. Register %ax has value 0x5678

10

Q5 mov

Suppose register %rax stores C variable long *x. Which of the following
instruction corresponds to the C statement *x = 10;
A. movq $10, %rax
B. movq $10, (%rax)
C. movq (%rax), $10
D. movq %rax, $10

• long *x
• x is a pointer to long (8 bytes, 64 bits)

• *x=10;
• de-referencing x, assign the value 10

• x is an address stored in %rax, use (%rax) to
deference it.

11

Q6 mov

Suppose register %rax stores C variable int x. Which of the following
instruction corresponds to the C statement x = 10;
A. movl $10, %eax
B. movq $10, %eax
C. movl $10, (%rax)
D. movq $10, (%rax)

• int x
• x is an integer with 4 bytes

• x=10;
• assign the value 10 to x

• x is a variable stored in %eax

12

Q7 mov

Given instruction movl $eax, (%rbx), what are likely data types for the
variable stored in %rbx?
A. long
B. unsigned long
C. int
D. unsigned int
E. int*
F. unsigned int*
G. long*
H. unsigned long*

• (%rbx)
• Deference %rbx => %rbx stores a pointer

• movl
• 4 bytes => %rbx stores a pointer which points

to a data of 4 bytes
• long is 8 bytes
• the movl instruction does not distinguish between

signed/unsigned

13

Q8 mov

Which of the following statements are true?
A. During a program's execution, its instructions are stored on disk while its

program data is stored in the memory.
B. During a program's execution, both its instructions and program data are

stored in the memory.
C. Compilers must generate explicit instructions to increment PC (aka %rip)
D. CPU automatically increments PC (aka %rip) as instructions are executed.
E. An executable file compiled for ARM can be directly executed by an x86

CPU.
F. An executable file compiled for ARM can not be directly executed by an

x86 CPU. 14

Strings
Arrays of chars

15

What are strings?

• They are arrays of the type char, which is typically one byte
• Char literals are in single quotes ‘ ’
• String literals are in double quotes “ “
• Unlike other arrays, strings have a way of knowing the length even at

runtime
• Strings are stored with the last byte set to 0 (or ‘\0’)

• C strings are called “null terminated”
• So you can find the length by looping over the string, keeping a counter, and stopping

when you find a char equal to zero
• There is also a standard library function for this, strlen

16

Defining a string

• char *arr = “hello world”;
• char arr[12] = “hello world”;
• The literal “hello world” includes the null-terminator.

?

?

0

‘d’

‘l’

‘r’

‘o’

‘w’

‘ ’

‘o’

‘l’

‘l’

‘e’

‘h’ 0x7F00

0x7F01

0x7F02

0x7F03

0x7F04
0x7F05

0x7F06

0x7F07

0x7F08
0x7F09
0x7F0A
0x7F0B

0x7F0C
0x7F0D

17

Linked list
A linear data structure

19

Why linked list?

• Like arrays, Linked List is a linear data structure.
• Unlike arrays, linked list elements are not stored at a contiguous

location; the elements are linked using pointers.
• Arrays have limitations:
• The size of the arrays are fixed (pre-defined)
• Inserting (Deleting) a new element in an array of elements is expensive

• because the room has to be created for the new elements and existing elements have to
be shifted.

12 99 5Head
Data Next

NULL

20

Advantages and Drawbacks

• Advantages over arrays:
• Dynamic size
• Ease of insertion/deletion

• Drawbacks:
• Random access is not allowed

• We have to access elements sequentially starting from the first node. (Traverse)
• Extra memory space for a pointer is required with each element of the list.
• Not cache friendly

• Since array elements are contiguous locations, there is locality of reference which is not
there in case of linked lists.

21

Linked list

• A linked list is represented by a pointer to the first node of the linked
list
• It is called the head
• If the linked list is empty, then the value of the head is NULL

• Each node in a list consists of at least two parts:
• data
• Pointer (or Reference) to the next node

• In the case of the last node in the list,
• the next field contains NULL - it is set as a null pointer.

• In C, we can represent a node using struct
• nodes are defined as (e.g.) node using typedef
• node *head

22

Initialize the linked list

• The list is initialized by creating a node *head which is set to NULL
• The variable head is now a pointer to NULL, but as nodes are added

to the list, head will be set to point to the first node
• In this way, head becomes the access point for sequential access to

the list.

23

Linked list

• Linked list insertion
• Linked list Deletion
• Search an element in a linked list
• Traverse a linked list
• Find length of a linked list
• …

24

Linked list

• In class, we pass the header pointer,
• ask it to return a new head
• the caller is responsible for updating

it itself
• In lab-2, we pass a pointer to pointer parameter (pointer to the head

pointer),
• to allow changing the head pointer directly instead of returning the new one
• note that there’s no return value; It’s not needed.

25

Inserting a node

• How can we insert a node in a linked list sorted by each node’s data?
• Assume data are all unique
• Four cases
• List is empty: insert_front
• Smaller than the head: insert_front
• Larger than some node with data A but smaller than A’s next node (data C):

• Insert a node after A before C
• Larger than all nodes:

• Insert a node at the end of the linked list

• Too many corner cases! Any tricks to simplify it (to one case)?
• Sentinel node

A C

B

27

Data Next NULL

-inf

Inserting a node

+inf

Head NULL

28

-inf

Next

Four cases
List is empty: insert_front
Smaller than the head: insert_front
Larger than some node with data A but smaller than A’s
next node (data C):

Insert a node after A before C
Larger than all nodes:

Insert a node at the end of the linked list

Head NULL

Q: What if we only add one
sentinel node with –inf,
instead of both –inf and +inf?

Dynamic memory allocation

• Each time you need to manually allocate data, use malloc
• void *malloc(size_t size);

• If you need to manually de-allocate
• void free(void *ptr);

29

More on linked list

• Implement a hash table
• see clear instructions on our website lab-2 page

• A hash table is an array of linked lists with a hash function
• A hash function basically just takes things and puts them in different

“buckets” (hash table’s array of entries)
• Each “bucket" just points to a linked list here

30

