CSO-Recitation 06
CSCI-UA 0201-007

RO6: Assessment 05 & Strings & Linked list

Today’s Topics

* Assessment 05
* Strings
e Linked list

Assessment 05

Q1 Basic C

: int g = 0;

Below are 4 C source files and their contents. 2: int main() {
Q1.1 fool.c oy
Which of the following statements are true?

A. The command gcc fool.c creates a binary executable
filc-calleda.out

B. The command gcc -c fool.c creates a non-executable
object file called fool.o

C. The command gcc fool.c results in an error.
After executing line 3, variable g has value 1.
E. After executing line 3, variable g could have any value.

#include “list.h”
static int num_inserts;

Q2 Static and extern [N

No other files can use the

num_inserts variable and
QZ]. foo2.c internal_func function

Which of the following statements are true?
A. The command gcc foo2.c creates a binary executable file called a.out.

B. The commandgec -c foo2.c creates a non-executable object file
called foo2.o0.

C. The command gct foo2.c results in an error.

bari.c

D. The commanugcc foo2.c barl.c creates a binary executable file 1t extern int g;
called a.out. 2: int main() {
3: g++;
E. The command gcc foo2.c barl.c results in an error. 41}
F. The command gcc foo2.c bar2.c creates a binary executable file

called a.out.
G. The command gce foo2.c bar2.c results in an error.

static int g = 1;

Q2 Static and extern

Q2.2

Suppose this command gcc foo2.c barl.c bar2.c generates barl.c
executable a.out, which of the following is true about executing
a.out?

A. The global variable g in barl.c and bar2.c have the same
underlying same memory location.

B. The global variable g in barl.c and bar2.c have different
underlving same memory locations.

C. The variable g-in foo2.c refers to the global variable g defined
in barl.c.

D. The variable g in foo2.c refers to the global variable g defined
in bar2.c.

E. The command gcc foo2.c barl.c bar2.c would result in an error.

void my func(int v)

: : {
Q3 Static for local variable ctatic nt c1 = 0
int c2 = 0;
cl += v;
c2 += v;
The following shows the code for function my_func
Q3.1 basic
A. Local variable c1 is allocated upon each invocation of my _func and de-allocated
upon its return.
B. Local variable czis allocated upon each invocation of my_func and de-allocated
upon Its return.
C. Local variable c1 and c2 always have the same value right before the return
of my_func.
D. Local variable ci has scope within function my_func and cannot be referred to
from outside of this function.
E. Local variable ¢2-has scope within function my_func and cannot be referred to

from outside of this function.
When “static” prefix local variables:
* |nitialized once, never deallocated
* Any change persists across function invocations
* like a global variable, except with local scope

Q3 Static for local variable o

int €2 = 0;

cl += v:
c2 += v:

Suppose one executes the following code snippet:
my_func(10);
my_func(20);

Which of the following statements are true?

A.

B.
C.
D. Rig

Rig
Rig
Rig

Nt
Nt
Nt

Nt

oefore returning from my_func(20), variab
oefore returning from my_func(20), variab

oefore returning from my_func(20), variab

oefore returning from my_func(20), variab

ecl
ecl
e c2
e c2

NdS Vd
NdS Vd

NdS Vd

NdS Vd

ue 20.
ue 30.
ue 20.
ue 30.

void my func(int v)

Execution Breakdown {

static int cl = 0;
int c¢2 = 0;

cl += v;
cZ2 += Vv;

e clis allocated and assigned with value O

e my_ func(10)
* c2 allocated and assigned with value O
e c1+=10
e c2+=10
e Function return (c2 is de-allocated)
* my_func(20)
* c2 allocated and assigned with value O
e c1+=10
e c2+=20

Q4 register

After x86 CPU executes instruction movqg S0x12345678, %rax, which of the

following is true?

A.
B.

o mmo o

The higher order 4-byte of register %rax are all zeros.

The higher order 4-bytes of register %rax remain the same as before the

movq instruction is executed.

Register %eax has value 0x00000000

Register %eax hasvalue 0x12345678

Register %eax is not changed by the movq instruction.
Register %ax has value 0x1234

Register %ax has value 0x5678

10

Q5 mov

Suppose register %rax stores C variable long *x. Which of the following
instruction corresponds to the C statement *x = 10;

A. movq S10, %rax

* long *x
)
B. mov(q slo’ (Arax) * Xis a pointer to long (8 bytes, 64 bits)
C. movq (%rax), S10 * *x=10;
o * de-referencing x, assign the value 10
D MOov(Q A)raX, $10 * X is an address stored in %rax, use (%rax) to

deference it.

movq Source, Dest
— Copy a quadword (64-bit) from the source operand

(first operand) to the destination operand (second
operand).

Q6 mov

Suppose register %rax stores C variable int x. Which of the following

instruction corresponds to the C statement x = 10;

A.

B.
C.
D. movq $10, (%rax)

movl S10, %eax

movq $10, %eax
movl $10, (%rax)

int x

X is an integer with 4 bytes
x=10;

assign the value 10 to x
X is a variable stored in %eax

12

Q7 mov

Given instruction movl Seax, (%rbx), what are likely data types for the
variable stored in %rbx?

long
unsigned long e (%rbx)
int » Deference %rbx => %rbx stores a pointer
. di * movl
unsignea int 4 bytes => %rbx stores a pointer which points
int* to a data of 4 bytes

* |ongis 8 bytes
* the movl instruction does not distinguish between
long™ signed/unsigned

unsigned long*

unsigned int*

Iomnmoo®pr

13

Q8 mov

Which of the following statements are true?

A.

During a program's execution, its instructions are stored on disk while its
program data is stored in the memory.

During a program’s execution, both its instructions and program data are
stored i tite memory.

Compilers must generate explicit instructions to increment PC (aka %rip)
CPU automatically iricrements PC (aka %rip) as instructions are executed.

An executable file compiled for ARM can be directly executed by an x86
CPU.

An executable file compiled for ARM can not be directly executed by an

e Yol al n YN
AOU LI u.

14

Strings

Arrays of chars

15

What are strings?

* They are arrays of the type char, which is typically one byte
* Char literals are in single quotes *’

o

e String literals are in double quotes

* Unlike other arrays, strings have a way of knowing the length even at
runtime
 Strings are stored with the last byte set to 0 (or ‘\0’)

e Cstrings are called “null terminated”

* So you can find the length by looping over the string, keeping a counter, and stopping
when you find a char equal to zero

* There is also a standard library function for this, strlen

16

Defining a string

*C
*C
o T

har *arr = “hello world”;
har arr[12] = “hello world”;

ne literal “hello world” includes the null-terminator.

Ox7F0OD
O0x7FOC

Ox7FOB
Ox7FOA
Ox7F09
Ox7F08

Ox7F07
O0x7F06

0x7F05
Ox7F04

O0x7F03
Ox7F02

Ox7F01
0x7F00

17

Linked list

A linear data structure

19

Head 12

Why linked list? =T Data Next

* Like arrays, Linked List is a linear data structure.

* Unlike arrays, linked list elements are not stored at a contiguous

location; the elements are linked using pointers.

* Arrays have limitations:
* The size of the arrays are fixed (pre-defined)

* Inserting (Deleting) a new element in an array of elements is expensive

» 99

NULL

* because the room has to be created for the new elements and existing elements have to

be shifted.

20

Advantages and Drawbacks

* Advantages over arrays:
* Dynamic size
* Ease of insertion/deletion

 Drawbacks:

 Random access is not allowed

* We have to access elements sequentially starting from the first node. (Traverse)
* Extra memory space for a pointer is required with each element of the list.
* Not cache friendly

* Since array elements are contiguous locations, there is locality of reference which is not
there in case of linked lists.

21

Linked list

* A linked list is represented by a pointer to the first node of the linked
list
* |tis called the head
* If the linked list is empty, then the value of the head is NULL

* Each node in a list consists of at least two parts:
* data
* Pointer (or Reference) to the next node

* In the case of the last node in the list,
e the next field contains NULL - it is set as a null pointer.

* In C, we can represent a node using struct

* nodes are defined as (e.g.) node using typedef

* node *head
22

Initialize the linked list

* The list is initialized by creating a node *head which is set to NULL

* The variable head is now a pointer to NULL, but as nodes are added
to the list, head will be set to point to the first node

* In this way, head becomes the access point for sequential access to
the list.

23

Linked list

* Linked list insertion

* Linked list Deletion

* Search an element in a linked list
* Traverse a linked list

* Find length of a linked list

24

Linked list g

node *insert_front(node *head, int val)

{
node *n = (node *)malloc(sizeof(node));
* In class, we pass the header pointer n->val = val;
. - t = head;
e ask it to return a new head vl [¢] noonex =

return n;

* the caller is responsible for updating
it itself

* In lab-2, we pass a pointer to pointer parameter (pointer to the head
pointer),
* to allow changing the head pointer directly instead of returning the new one
* note that there’s no return value; It’s not needed.

25

Data Next

A

NULL

Inserting a node

—

¢ |

| B

* How can we insert a node in a linked list sorted by each node’s data?

* Assume data are all unique

* Four cases
* Listis empty: insert_front
* Smaller than the head: insert_front

e Larger than some node with data A but smaller than A’s next node (data C):

* Insert a node after A before C

e Larger than all nodes:
* Insert a node at the end of the linked list

* Too many corner cases! Any tricks to simplify it (to one case)?

* Sentinel node

27

Inserting a node

Four cases
1l P mtnnradr e tmamrArd FrAnt
Liou 1o \.,Illlut.y- IiIovi v rrviie
Head Next NULL Smatterthan-the-head—insert—front
-inf | @ »| +inf Larger than some node with data A but smaller than A’s
next node (data C):
, Insert a node after A before C
Q: What If we Only add one l Aranr than All nAadAc:
_ _) Largerthan-allnedes;
sentinel node with —inf, Incertanedeatthe ond ofthe linked list

instead of both —inf and +inf?

Head NULL

-inf

Dynamic memory allocation

* Each time you need to manually allocate data, use malloc
* void *malloc(size _t size);

* If you need to manually de-allocate
 void free(void *ptr);

29

More on linked list

* Implement a hash table
* see clear instructions on our website lab-2 page

* A hash table is an array of linked lists with a hash function

* A hash function basically just takes things and puts them in different
“buckets” (hash table’s array of entries)

* Each “bucket" just points to a linked list here

30

