CSO-Recitation O/
CSCI-UA 0201-007

RO7: Assessment 05 & Assembly & lab?2

Today’s Topics

* Assessment 06
* Assembly
* Using GDB to debug assembly

Assessment 06

Q1 %eax

Suppose register %eax corresponds to the C variable x of some integer ty\oe.
Iffth?e value of %eax is Oxffffffff, what potentially could be the type and value
of X

A. type:int, value: -1

type: int, value: -27{31}

type: long, value: -1

type: long, value: -27{63}

type: unsigned int, value: 27{32}-1
type: unsigned int, value 27{32}

. type: unsigned long, value 27{32}-1
. type: unsigned long, value 27{32}

T OMmMMOoOO®

Q2 movg

Suppose register %rdi and %rsi corresponds to C variable x and vy,
respectively. Given machine instruction movq (%rdi, %rsi, 8), %rax, what can
you infer to be the most likely type of x and vy, respectively?

long and long (%rdi, %rsi, 8) => val(%rdi)+val(%rsi)*8 is a

A .
pointer
B |Ong *and long * Pointer arithmetic
e =>%rdi (x) is a pointer
E 3 *
C Iong and Iong e =>%rsi(y) is used for offset
D. int * and Iong movl (%rdi, %rsi, 4), %rax
E int and int val(x) val(x) + 8y
G. int *andint *

I S /77

e Typically this is indexing an array. Since “+8y” here, more
likely the element is 8-byte.

Q2 movg

Suppose register %rdi and %rsi corresponds to C variable x and vy,
respectively. Given machine instruction movq (%rdi, %rsi, 8), %rax, what can
you infer to be the most likely type of x and vy, respectively?

Iong and Iong e Typically this is indexing an array. Since “+8y” here, more

|ong * and |ong likely the element is 8-byte.

A
B
C. long * andlong * long x[10] = {0};

: longy = 1;

D. int * and long movl (%rdi, %rsi, 4), %rax x[y] <= the address is val(x)+8*y
E. intandint

F. int * and int

G

int * and int * x[y] == *(x+y)

Q3 Deference pointers

Suppose %rsi corresponds to C variable y of some pointer type. Which
of the following instructions dereference the pointer y?

leaq (%rsi), %rax

* derefence the pointer y stored in register %rsi:

movq (%rsi), %rax * (%rsi)

e |ea: no memory access!
movq %rsi, %rax
. subq %rax, (%rsi)

subqg %rax, %rsi

m Mmoo 0 ®m P

none of the above

Q4 Basic machine execution

Which of the following statements are true?

A.

O

Accessing data stored in memory is as fast as accessing data stored
in CPU registers.

Accessing data stored-in memory is much slower than accessing
data in CPLl registers.

A C program is compiled into x86 instructions which are directly
executed by the CPU.

. A Java program is compiled into x86 instructions which are directly

executed by the CPU.
One can use %rip as an operand for the mov instruction

%rip: store the address of the instructions
only 16 general purpose registers

Q5 mov vs. lea

Let a be an array of int elements. Suppose %rdi stores the address of a[0], and %rsi stores
index i of type long. Which of the following instruction or sequence of instructions result in

%eax storing ali]?

A.

nmo 0w

o

leal (%rdi, %rsi, 4), %eax
movl (%rdi, %rsi, 4), %eax
movl (%rsi, %rdi, 4), %eax
leal (%rdi, %rsi, 8), %eax
movl (%rdi, %rsi, 8), %eax
movl (%rsi, %rdi, 8), %eax

salq $2, %rsi
addq Y%rdi, %rsli
movl (%rsi), %eax

saiq SZ, %rsi
movl (%rsi, %rdi), %eax

ais an array of int
ali] == *(a+i)
(%rdi, %rsi, 4)

salqg src, dest => dest=dest << src
* arithmetic left shift
salq $2, %rsi
o ==4* %rsi
* now, %rsi->4i
* then, %rsi=%rsi+%rdi=4i+the address of
a[0]=address of ali]
* then, derefence it to get the value of a]i]

Debugging with GDB without C
source files

Recap: Some common gdb commands

* help

* Gdb provides online documentation. Just typing help will give you a list of
topics. Or just type help command and get information about any other

command.
Short | Long Name What do it do?
Name

Begins executing the program — you can specify arguments after the word
run

through the program one
a;c] a time

inside functions and running their code too

S step { Execute the current source line and stop before the next source line, going

next Continue until the next source line, counting called functions as a single line
P print Prints the value of an expression or variable

I list Prints out source code

q quit Exit gdb

Recap: Some more advanced gdb commands

break

continue

backtrace

frame

info

Set the breakpoint at the beginning
of the function

\

Sets a breakpoint at a specified location (either a function name or line
number)

Continues executing after being stopped by a breakpoint

Prints out information on the call stack, i.e. where in the program's
execution it is being stopped at

Prints information on the current frame / allows you to change frames

Prints out helpful information (e.g. and)

12

Debugging without C source code

* No C source code.

* |Instead, use ni/si to run one line of assembly
s~ Use toseethesourcecodethatran

* Instead: use disas to see the assembly that ran

! . ot i~ I

o °
ava Aavea) ARNa a - ava a ARNaNNa () - Ava ava AT a -
S LA W ./ v @ A U W I U4 s v U NI CA U/

Variable names generally disappear; Instead, examine registers/memory contents
that stores the variables

Use print Sreg to examine the register name reg

* E.g. print Srsi
Alternatively, use info registers to see all the registers
Use x address to examine the content stored in ‘address’

14

Other useful command and options

* Delete specified breakpoint id.
* info breakpoints

d decimal

% hex

e d<id> t binary
. £ floating point
* print accepts format { instruction

* p[rint][/format] expr, where format can be EEEEE:
* E.g. p/x Srip prints the register %rip in hex format

* To examine the assembly code of a function

* Use disas [func_name]
e E.g., disas ex1 prints for function ex1
 Alternatively, use x/[count][format] [func _name]

* A more descriptive source: https://web.cecs.pdx.edu/~apt/cs322/gdb.pdf

Q6 Lab3 with gdb

For the next series of questions, you need to use gdb to run Lab3's
tester_sol which is the executable tester linked with ex_sol{1-5}.0.

Q6.1 ex1
Stop execution in the first invocation of function ex1 (use breakpoints).

* Examine ex1's machine instructions. What is the value of register %rsi
prior to executing the first instruction of ex1? (%rsi contains the
second function argument).

* (Please write the value as a decimal number)

Q6 Lab3 with gdb

Q6.2 ex1

* During tester_sol's first invocation of function ex1, what is the value of
register %eax prior to the function's return? (Write the value as a decimal
number)

Q6.3 ex2

* During tester_sol's first invocation of function ex2, what is the value of
register %rsi prior to executing the first instruction of ex2? (%rsi contains
the second function argument).

* (Please write the value as a decimal number)

Q6 Lab3 with gdb

Q6.4 ex2 (%rdi)

* During tester_sol's first invocation of function ex2, what is the value of
register %rdi prior to executing the first instruction of ex2? (%rdi contains the
first function argument).

* Please write %rdi's value as a decimal number.

Q6.5 ex2 (%rdi)

* This question is the same as Q6.4, except that please write %rdi's value as a
hex number (your answer should include the prefix Ox)

* Seem problematic

* The result is a bit random. One possible result for Q6.4 is 140737488347056
* Let’s skip for now

Q6 Lab3 with gdb

Q6.6 ex2 (%rdi)

By looking at your answers for Q6.4 and Q6.5, guess inux Memory Layout
for the variable stored in %rdi (which is the first arg

. OOOO7FF?FFFFFFFF - 8MB
un5|gned Iong A few clues: > MEMOry regions }dEfau't

A.
limit
B Iong - The value starts with Ox7fff..xxx yrogram:
' - More precisely, this is likely a pointer to
C. int stack memory
D. unsigned int
Libraries
E. some pointer type red Libraries]
nstructions “
F. none of the above

read-only data
ead-write data

Assembly

Cis for people

Why Assembly

* In the real world, computers don’t “understand” code
* They only “understand” a set of instructions

* To run code
* 1. The CPU fetches an instruction from the memory at the PC(program counter)
e 2. The CPU decodes that instruction

3. If needed, the CPU fetches data from memory

4. The CPU performs computations

5. If needed, the CPU writes data to memory

6. The CPU increments the PC to the next instruction

Why Assembly

 Computers don’t “understand” assembly either, but assembly maps
much more closely to machine instructions than C code

* Assembly code involves instruction “mnemonics”
* For x86_64, These are things like addqg, movq, imul

X86 general purpose registers

Accessing memory is very, very slow compared to the rest of what a CPU can do
Registers are fast temporary storage
X86-64 ISA: 16 8-byte general purpose registers

8 of them were evolved from 16-bit ISA, %rax, Y%rbx, %rcx, Y%rdx, Y%rsi,
%rdi, Y%rbp, Y%rsp

e Lower 32-bit — replace r with e, eg %eax, %esp
* Lower 16-bit—remove r, eg %ax, %sp

With 64 bits came 8 more registers, %r8 to %r15
* Lower 32-bit- add a d, eg %r8d
* Lower 16-bit—add a w, eg %r8w
* Lower 8-bit—add a b, eg %r8b

%ax, %bx, %cx, and %dx, allow you to access their upper 8 bits (replace ”"x” with “h”)

As a table:

64-bit 32-bit 16-bit 8-bit (low)
RAX EAX AX AL
RBX EBX BX BL
RCX ECX CX CL
RDX EDX DX DL
RSI ESI Si SIL
RDI EDI DI DIL
RBP EBP BP BPL
RSP ESP SP SPL
R8 R8D R8W R8B
R9 R9D ROW R9B
R10 R10D R10W R10B
R11 R11D R11W R11B
R12 R12D R12W R12B
R13 R13D R13W R13B
R14 R14D R14W R14B
R15 R15D R15W R15B

Some of the 16-bit subregisters are also special: the original 8086 allowed the high byte of AX, BX, CX, and DX to
be accessed indepenently, so x86-64 preserves this for some encodings:

16-bit 8-bit (high)
AX AH
BX BH
CX CH https://blog.yossarian.net/2020/11/30/Ho
DX DH \r/]va-\r/r;any—reg|sters-does-an—x86—64—cpu-

Usage of registers

e rdi, rsi, rdx, rcx, r8, r9: used for pass the parameters (follow the
sequence)

void function(int x, int y)

{
}

