
CSO-Recitation 07
CSCI-UA 0201-007

R07: Assessment 05 & Assembly & lab2

Today’s Topics

• Assessment 06
• Assembly
• Using GDB to debug assembly

2

Assessment 06

3

Q1 %eax

Suppose register %eax corresponds to the C variable x of some integer type.
If the value of %eax is 0xffffffff, what potentially could be the type and value
of x?
A. type: int, value: -1
B. type: int, value: -2^{31}
C. type: long, value: -1
D. type: long, value: -2^{63}
E. type: unsigned int, value: 2^{32}-1
F. type: unsigned int, value 2^{32}
G. type: unsigned long, value 2^{32}-1
H. type: unsigned long, value 2^{32}

Q2 movq

Suppose register %rdi and %rsi corresponds to C variable x and y,
respectively. Given machine instruction movq (%rdi, %rsi, 8), %rax, what can
you infer to be the most likely type of x and y, respectively?
A. long and long
B. long * and long
C. long * and long *
D. int * and long
E. int and int
F. int * and int
G. int * and int *

• (%rdi, %rsi, 8) => val(%rdi)+val(%rsi)*8 is a
pointer

• Pointer arithmetic
• => %rdi (x) is a pointer
• => %rsi (y) is used for offset

movl (%rdi, %rsi, 4), %rax

… ///////////////

val(x)
(%rdi)

val(x) + 8y
(%rdi + 8*%rsi)

• Typically this is indexing an array. Since “+8y” here, more
likely the element is 8-byte.

Q2 movq

Suppose register %rdi and %rsi corresponds to C variable x and y,
respectively. Given machine instruction movq (%rdi, %rsi, 8), %rax, what can
you infer to be the most likely type of x and y, respectively?

A. long and long

B. long * and long

C. long * and long *

D. int * and long

E. int and int

F. int * and int

G. int * and int *

movl (%rdi, %rsi, 4), %rax

• Typically this is indexing an array. Since “+8y” here, more

likely the element is 8-byte.

long x[10] = {0};

long y = 1;

x[y] <= the address is val(x)+8*y

Q: x[y] == *(x+8*y)?

No! Pointer arithmetic:

The code x+8*y evaluates to val(x)+8*y*sizeof(long) =

val(x)+64*y

x[y] == *(x+y)

Q3 Deference pointers

Suppose %rsi corresponds to C variable y of some pointer type. Which
of the following instructions dereference the pointer y?
A. leaq (%rsi), %rax
B. movq (%rsi), %rax
C. movq %rsi, %rax
D. subq %rax, (%rsi)
E. subq %rax, %rsi
F. none of the above

• derefence the pointer y stored in register %rsi:
• (%rsi)
• lea: no memory access!

Q4 Basic machine execution

Which of the following statements are true?
A. Accessing data stored in memory is as fast as accessing data stored

in CPU registers.
B. Accessing data stored in memory is much slower than accessing

data in CPU registers.
C. A C program is compiled into x86 instructions which are directly

executed by the CPU.
D. A Java program is compiled into x86 instructions which are directly

executed by the CPU.
E. One can use %rip as an operand for the mov instruction

%rip: store the address of the instructions
only 16 general purpose registers

Q5 mov vs. lea

Let a be an array of int elements. Suppose %rdi stores the address of a[0], and %rsi stores
index i of type long. Which of the following instruction or sequence of instructions result in
%eax storing a[i]?
A. leal (%rdi, %rsi, 4), %eax
B. movl (%rdi, %rsi, 4), %eax
C. movl (%rsi, %rdi, 4), %eax
D. leal (%rdi, %rsi, 8), %eax
E. movl (%rdi, %rsi, 8), %eax
F. movl (%rsi, %rdi, 8), %eax
G. salq $2, %rsi

addq %rdi, %rsi
movl (%rsi), %eax

H. salq $2, %rsi
movl (%rsi, %rdi), %eax

• a is an array of int
• a[i] == *(a+i)
• (%rdi, %rsi, 4)

• salq src, dest => dest=dest << src
• arithmetic left shift

• salq $2, %rsi
• == 4 * %rsi
• now, %rsi -> 4i
• then, %rsi=%rsi+%rdi=4i+the address of

a[0]=address of a[i]
• then, derefence it to get the value of a[i]

Debugging with GDB without C
source files

Recap: Some common gdb commands

• help
• Gdb provides online documentation. Just typing help will give you a list of

topics. Or just type help command and get information about any other
command.

Short
Name

Long Name What do it do?

r run Begins executing the program – you can specify arguments after the word
run

s step Execute the current source line and stop before the next source line, going
inside functions and running their code too

n next Continue until the next source line, counting called functions as a single line
p print Prints the value of an expression or variable
l list Prints out source code
q quit Exit gdb

step through the program one
line at a time

11

Recap: Some more advanced gdb commands

Short
Name

Long Name What do it do?

b break Sets a breakpoint at a specified location (either a function name or line
number)

c continue Continues executing after being stopped by a breakpoint
bt backtrace Prints out information on the call stack, i.e. where in the program's

execution it is being stopped at
f frame Prints information on the current frame / allows you to change frames
i info Prints out helpful information (e.g. info args and info locals)

Set the breakpoint at the beginning
of the function

Segmentation fault
(core dumped)

12

Debugging without C source code

• Next/step to run one line of code
• No C source code.
• Instead, use ni/si to run one line of assembly

• Use list to see the source code that ran
• Instead: use disas to see the assembly that ran

• Use print var to examine the variable named var
• Check the locals (info locals) and args (info args) to see if they are bad

• Variable names generally disappear; Instead, examine registers/memory contents
that stores the variables

• Use print $reg to examine the register name reg
• E.g. print $rsi

• Alternatively, use info registers to see all the registers
• Use x address to examine the content stored in ‘address’

14

Other useful command and options

• Delete specified breakpoint id.
• info breakpoints
• d <id>

• print accepts format
• p[rint][/format] expr, where format can be
• E.g. p/x $rip prints the register %rip in hex format

• To examine the assembly code of a function
• Use disas [func_name]
• E.g., disas ex1 prints for function ex1
• Alternatively, use x/[count][format] [func_name]

• A more descriptive source: https://web.cecs.pdx.edu/~apt/cs322/gdb.pdf

Q6 Lab3 with gdb

For the next series of questions, you need to use gdb to run Lab3's
tester_sol which is the executable tester linked with ex_sol{1-5}.o.
Q6.1 ex1
Stop execution in the first invocation of function ex1 (use breakpoints).
• Examine ex1's machine instructions. What is the value of register %rsi

prior to executing the first instruction of ex1? (%rsi contains the
second function argument).
• (Please write the value as a decimal number)
• 100

Q6 Lab3 with gdb

Q6.2 ex1
• During tester_sol's first invocation of function ex1, what is the value of

register %eax prior to the function's return? (Write the value as a decimal
number)
• 1
Q6.3 ex2
• During tester_sol's first invocation of function ex2, what is the value of

register %rsi prior to executing the first instruction of ex2? (%rsi contains
the second function argument).
• (Please write the value as a decimal number)
• 4

Q6 Lab3 with gdb

Q6.4 ex2 (%rdi)
• During tester_sol's first invocation of function ex2, what is the value of

register %rdi prior to executing the first instruction of ex2? (%rdi contains the
first function argument).
• Please write %rdi's value as a decimal number.

Q6.5 ex2 (%rdi)
• This question is the same as Q6.4, except that please write %rdi's value as a

hex number (your answer should include the prefix 0x)
• Seem problematic
• The result is a bit random. One possible result for Q6.4 is 140737488347056
• Let‘s skip for now

Q6 Lab3 with gdb

Q6.6 ex2 (%rdi)
By looking at your answers for Q6.4 and Q6.5, guess the most likely data type
for the variable stored in %rdi (which is the first argument of function ex2)?
A. unsigned long
B. long
C. int
D. unsigned int
E. some pointer type
F. none of the above

A few clues:
- The value starts with 0x7fff..xxx
- More precisely, this is likely a pointer to

stack memory

Assembly
C is for people

Why Assembly

• In the real world, computers don’t “understand” code
• They only “understand” a set of instructions
• To run code
• 1. The CPU fetches an instruction from the memory at the PC(program counter)
• 2. The CPU decodes that instruction
• 3. If needed, the CPU fetches data from memory
• 4. The CPU performs computations
• 5. If needed, the CPU writes data to memory
• 6. The CPU increments the PC to the next instruction

Why Assembly

• Computers don’t “understand” assembly either, but assembly maps
much more closely to machine instructions than C code
• Assembly code involves instruction “mnemonics”
• For x86_64, These are things like addq, movq, imul

X86 general purpose registers

• Accessing memory is very, very slow compared to the rest of what a CPU can do
• Registers are fast temporary storage
• X86-64 ISA: 16 8-byte general purpose registers
• 8 of them were evolved from 16-bit ISA, %rax, %rbx, %rcx, %rdx, %rsi,
%rdi, %rbp, %rsp
• Lower 32-bit – replace r with e, eg %eax, %esp
• Lower 16-bit– remove r, eg %ax, %sp

• With 64 bits came 8 more registers, %r8 to %r15
• Lower 32-bit - add a d, eg %r8d
• Lower 16-bit – add a w, eg %r8w
• Lower 8-bit – add a b, eg %r8b

• %ax, %bx, %cx, and %dx, allow you to access their upper 8 bits (replace ”x” with “h”)

https://blog.yossarian.net/2020/11/30/Ho
w-many-registers-does-an-x86-64-cpu-
have

Usage of registers

• rdi, rsi, rdx, rcx, r8, r9: used for pass the parameters (follow the
sequence)

void function(int x, int y)
{

….
}

When enter the function, x is
stored in %edi, and y is stored in

%esi.

