
CSO-Recitation 09
CSCI-UA 0201-007

R09: Assessment 08 & Data segment and buffer overflow

Today’s Topics

• Assessment 08
• Data segment and buffer overflow

2

Assessment 08

3

Q1 array à Q1.1

What is the value of *c[1] after executing line 11?
A. 1

B. 2

C. 3

D. 4
E. 5

F. None of the above

4

1 2

3 4

a: addr of a[0]

b: addr of b[0]a b

c

c[1]++;

b+1

type: pointer to int

Q1.2 arr[i]++

If Line 3 is realized using one instruction, what's that instruction?

A. `addl $0x8,(%rdi,%rsi,8)`

B. `addl $0x4,(%rdi,%rsi,8)`

C. `addl $0x8,(%rdi,%rsi,4)`

D. `addl $0x4,(%rdi,%rsi,4)`

E. `addq $0x8,(%rdi,%rsi,8)`

F. `addq $0x4, (%rdi,%rsi,8)`

G. `addq $0x8,(%rdi,%rsi,4)`

H. `addq $0x4,(%rdi,%rsi,4)`

6

arr[i]:

• Type: pointer to int, 8 bytes => addq

• arr[i]: (%rdi, %rsi, 8)

• addq $0x1, (%rdi, %rsi, 8)?

• addq $0x4 (size of int), (%rdi, %rsi, 8)

start addr of the

array

index

Size of each element

(pointer, 8 bytes)

3 4

<…0>a bb+1
<…4>

add 4

Q2 à Q2.1 location of p

Where is the local variable t in test stored?
A. some register
B. memory (data segment)
C. memory (stack)
D. memory (heap)

7

• local array/struct variables => stack

Q2.2 p->val

If Line 9 is realized using one instruction,
what is that instruction?
A. `movl $0x0,0x4(%rdi)`
B. `movq $0x0,0x4(%rdi)`
C. `movl $0x0,0x8(%rdi)`
D. `movq $0x0,0x8(%rdi)`
E. `movl $0x0,0x4(%rsi)`
F. `movq $0x0,0x4(%rsi)`
G. `movl $0x0,0x8(%rsi)`
H. `movq $0x0,0x8(%rsi)`

9

char* is 8 byte
=> movq

key val

p (%rdi)

<…0> <…8>

Q3 str_concat

The following C function str_concat appends the src string to the dst string,
overwriting the terminating null byte at the end of dst, and then adds a
terminating null byte.
• Q3.1 line 5
• Please fill in the code at line 6 (must be a one liner). To facilitate automatic

grading, please do not have any spaces in your C statement, and make sure
to include the end of the statement semicolon.
• dst[len+i]=src[i];

Q3.2 line 7

Which of the following C statement can be used at line 8 correctly,
without compilation nor runtime error?

A. dst[len] = '\0';

B. dst[len] = NULL;

C. dst[len] = 0;

D. dst[len+i] = '\0';

E. dst[len+i] = NULL;

F. dst[len+i] = 0;

NULL: means a null pointer.
In C language, NULL is defined as (void*)0.
E triggers compilation warning

• makes integer from pointer without a cast [enabled by default]
A bit vague, so select E or not, we give full mark

Q4. Given the following C program (which invokes str_concat
defined in Q3)

Suppose the following assembly is generated
for the above C program (including
str_concat). Please assume that the addresses
to the left of each instruction shown below
are the actual addresses where the
instructions are stored at during runtime.

Q4
Suppose the value of %rsp is 0x7ffd6a5e3020 just prior to
executing the first instruction of dangerous

rsp0x7ffd6a5e3020

0x7ffd6a5e3018

0x7ffd6a5e3010

0x7ffd6a5e3008

0x7ffd6a5e3000

Q4
Suppose the value of %rsp is 0x7ffd6a5e3020 just prior to
executing the first instruction of dangerous

00 00 00 00 05 50 06 fb

rsp0x7ffd6a5e3020

0x7ffd6a5e3018

0x7ffd6a5e3010

0x7ffd6a5e3008

0x7ffd6a5e3000

Q4
00 00 00 00 05 50 06 fb

rsp0x7ffd6a5e3020

0x7ffd6a5e3018

0x7ffd6a5e3010

0x7ffd6a5e3008

0x7ffd6a5e3000

Suppose the value of %rsp is 0x7ffd6a5e3020 just prior to
executing the first instruction of dangerous

Q4
Suppose the value of %rsp is 0x7ffd6a5e3020 just prior to
executing the first instruction of dangerous

00 00 00 00 05 50 06 fb

00 00 00 6f 6c 6c 65 68

rsp

0x7ffd6a5e3020

0x7ffd6a5e3018

0x7ffd6a5e3010

0x7ffd6a5e3008

0x7ffd6a5e3000

“hello”

Q4
Suppose the value of %rsp is 0x7ffd6a5e3020 just prior to
executing the first instruction of dangerous

00 00 00 00 05 50 06 fb

00 00 00 6f 6c 6c 65 68

00 00 00 64 6c 72 6f 77

rsp

0x7ffd6a5e3020

0x7ffd6a5e3018

0x7ffd6a5e3010

0x7ffd6a5e3008

0x7ffd6a5e3000

“world”

Q4
Suppose the value of %rsp is 0x7ffd6a5e3020 just prior to
executing the first instruction of dangerous

00 00 00 00 05 50 06 fb

00 00 00 6f 6c 6c 65 68

00 00 00 64 6c 72 6f 77

rsp, rsi

0x7ffd6a5e3020

0x7ffd6a5e3018

0x7ffd6a5e3010

0x7ffd6a5e3008

0x7ffd6a5e3000

rdi

Q4
Suppose the value of %rsp is 0x7ffd6a5e3020 just prior to
executing the first instruction of dangerous

00 00 00 00 05 50 06 fb

00 00 00 6f 6c 6c 65 68

00 00 00 64 6c 72 6f 77

rsi

0x7ffd6a5e3020

0x7ffd6a5e3018

0x7ffd6a5e3010

0x7ffd6a5e3008

0x7ffd6a5e3000

rdi

appends the src string
to the dst string,
overwriting the
terminating null byte
at the end of dst, and
then adds a
terminating null byte.

dst

src

Q4
Suppose the value of %rsp is 0x7ffd6a5e3020 just prior to
executing the first instruction of dangerous

00 00 00 00 05 50 06 fb

00 00 00 6f 6c 6c 65 68

00 00 00 64 6c 72 6f 77

rsi

0x7ffd6a5e3020

0x7ffd6a5e3018

0x7ffd6a5e3010

0x7ffd6a5e3008

0x7ffd6a5e3000

rdi

appends the src string
to the dst string,
overwriting the
terminating null byte
at the end of dst, and
then adds a
terminating null byte.

dst

src

Q4
Suppose the value of %rsp is 0x7ffd6a5e3020 just prior to
executing the first instruction of dangerous

00 00 00 00 05 00 64 6c

72 6f 77 6f 6c 6c 65 68

00 00 00 64 6c 72 6f 77

rsi

0x7ffd6a5e3020

0x7ffd6a5e3018

0x7ffd6a5e3010

0x7ffd6a5e3008

0x7ffd6a5e3000

rdi

appends the src string
to the dst string,
overwriting the
terminating null byte
at the end of dst, and
then adds a
terminating null byte.

dst

src

Terminating
null byte

Q4
Suppose the value of %rsp is 0x7ffd6a5e3020 just prior to
executing the first instruction of dangerous

00 00 00 00 05 00 64 6c

72 6f 77 6f 6c 6c 65 68

00 00 00 64 6c 72 6f 77

rsp

0x7ffd6a5e3020

0x7ffd6a5e3018

0x7ffd6a5e3010

0x7ffd6a5e3008

0x7ffd6a5e3000

Q4
Suppose the value of %rsp is 0x7ffd6a5e3020 just prior to
executing the first instruction of dangerous

00 00 00 00 05 00 64 6c

72 6f 77 6f 6c 6c 65 68

00 00 00 64 6c 72 6f 77

rsp0x7ffd6a5e3020

0x7ffd6a5e3018

0x7ffd6a5e3010

0x7ffd6a5e3008

0x7ffd6a5e3000

Use this as the
return address

(corrupted!)

Q4

• Q4.1 &buf1[0]
• Suppose the value of %rsp is 0x7ffd6a5e3020 just prior to executing

the first instruction of dangerous, what is the address of the first
element of buf1 (aka &buf1[0])?
• 0x7ffd6a5e3018
• Q4.2 &buf2[0]
• Using the same premise of Q4.1 earlier, what is the address of the

first element of buf2 (aka &buf2[0])?
• 0x7ffd6a5e3010

00 00 00 00 05 50 06 fb

00 00 00 6f 6c 6c 65 68

00 00 00 64 6c 72 6f 77

buf2

0x7ffd6a5e3020

0x7ffd6a5e3018

0x7ffd6a5e3010

0x7ffd6a5e3008

0x7ffd6a5e3000

buf1

Q4

• Q4.3
• Using the same premise of Q4.1 earlier, what

are the 8 bytes stored in the memory address
0x7ffd6a5e3020 (which is the value of %rsp
just prior to executing the first instruction of
dangerous)?
• 0x55006fb

00 00 00 00 05 50 06 fb

rsp0x7ffd6a5e3020

0x7ffd6a5e3018

0x7ffd6a5e3010

0x7ffd6a5e3008

0x7ffd6a5e3000

Q4

• Q4.4 Which of the following statements are true?
A. This program has no buffer overflow bugs and will execute correctly.
B. This program has a buffer overflow bug, but it will nevertheless execute

without a problem because the compiler has protected the stack using a
canary.

C. This program has a buffer overflow bug, but it will nevertheless execute
without a problem because the compiler has allocated extra space on
the stack that cushions the overflow.

D. This program has a buffer overflow bug which is likely to manifest as a
segmentation fault.

E. buf1 is overflown during execution.
F. buf2 is overflown during execution.

Q4

• Q4.5 last instruction
If running this program results in a segmentation fault. What is the last
instruction executed before the segmentation fault occurs?
A. The ret instruction in main function
B. The ret instruction in dangerous function
C. The ret instruction in str_concat function
D. The instruction to deallocate stack in dangerous, i.e. addq

$0x10,%rsp.

Q4

• Q4.6
• If running this program results in a

segmentation fault, what is the
memory address that corresponds
to the illegal memory access? You
should assume the same premise
as Q4.1.
• 0x500646c

00 00 00 00 05 00 64 6c

72 6f 77 6f 6c 6c 65 68

00 00 00 64 6c 72 6f 77

rsp0x7ffd6a5e3020

0x7ffd6a5e3018

0x7ffd6a5e3010

0x7ffd6a5e3008

0x7ffd6a5e3000

Use this as the
return address

(corrupted!)

Data segment

29

Data segment

• Local variables
• char, int, long, … (primitive data types)

and pointers => use registers whenever
possible

• stack otherwise
• local array/struct variables => stack

Stack

Heap

Statically-
allocated

data
Code

segment

Local
variable

Dynamically
allocated variable
(e.g.,malloc)

Global
Variable

executable
instructions

Example of Array/Struct accessing

typedef struct node {
long id;
char *name;
struct node *next;

}node;

void init_node(node*n, long id, char *name){
n->id=id;
n->name=name;
n->next=NULL;

}

id name next

0 8 16 24

movq %rsi, (%rdi)
movq %rdx, 8(%rdi)
movq $0, 16(%rdi)

%rdi %rsi %rdx

%rdi

Buffer Overflow
Not all buggy memory references access “illegal” memory

33

Buffer Overflow

• Have learnt about the memory layout
• If an instruction tries to access some invalid memory
• Segmentation fault occurs

• But not all buggy memory references access “illegal” memory
• Buffer overflow exploits

34

Buffer Overflow

• Buffer overflow on the stack
• Buffer overflow overwrites the return address
• attackers may carefully chosen return address, executes malicious code
• code injection buffer overflow attacks

35

Defenses

• Write correct code to avoid overflow vulnerability
• Use safe APIs to limit buffer lengths

36

char *
strcpy(char* dst, const char* src)
{

char *save = to;
for (; (*dst = *src)!= '\0'; ++from, ++to);
return(save);

}

Copy src to dst until the end of src.
When length(src) > sizeof(dst),

overflow!

Defenses

• Write correct code to avoid overflow vulnerability

• Use safe APIs to limit buffer lengths

37

char *

strcpy(char* dst, const char* src)

{

char *save = to;

for (; (*dst = *src)!= '\0'; ++from, ++to);

return(save);

}

Copy src to dst until the end of src.

When length(src) > sizeof(dst),

overflow!

char *strncpy(char* dst, const char* src, int nlen);

Copy src to dst with nlen chars

char *src = ….

char dst[100];

strncpy(dst, src, sizeof(dst));

Limit the size, and thus it

wouldn’t overflow.

Defenses

• Write correct code to avoid overflow vulnerability
• Use safe APIs to limit buffer lengths
• Use a memory-safe language

• E.g., python checks every array access and raise exception (crash the program) if the
access is beyond the bound

38

a = [0, 1, 2] # python array of size 3
print(a[10])

10 >= 3
This throws an IndexError exception!

Defenses

• Mitigate attacks despite buggy code
• will be an always on-going project, attack and defense itself are alternately

developed
• Security research domain

• One idea to prevent control flow hijiacking: catch over-written return address
before invocation
• place special value (“canary”) just beyond buffer
• GCC implementation: -fstack-protector

39

Simple buffer
overflow will
overwrite canary in
order to reach return
address

Backup: Compiler optimization
Tries to minimize or maximize some attributes of an executable computer program

40

Compiler Optimization

• Goal: generate efficient, correct machine code
• generally implemented using a sequence of optimizing transformation

• Common optimization
• code motion
• use simpler instructions
• reuse common subexpressions

42

Code Optimization 1 Optimization 2 Optimization 3 …

Examples

• Code motion

• Use simpler instruction:
• return 9*x

void set_arr(long *arr, long n) {
for (long i = 0; i < n; i++)

arr[i] = n*n;
}

void set_arr(long *arr, long n) {
long t = n*n;
for (long i = 0; i < n; i++)

arr[i] = t;
}

// %rdx stores x
mov %rdx,%rax
shl $0x3,%rax
add %rdx,%rax

// %rax stores x
lea (%rax,%rax,8),%rax

8*%rax+%rax=9*%rax
3 instructions => 1 instruction

Optimization -- GCC

• gcc’s optimization levels: -O, -O2, -O3, -Og, -O0, -Os, -Ofast
• learn more here: https://gcc.gnu.org/onlinedocs/gcc/Optimize-

Options.html

44

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Optimization -- GCC

• Tip: when debugging your code, it may help to disable optimizations
• Replace –Og (if any) with –O0 in the Makefile CFLAGS

• To learn more about GCC’s optimizations, invoke GCC with -Q --
help=optimizers to find out the exact set of optimizations that are
enabled at each level

46

