
CSO-Recitation 11
CSCI-UA 0201-007

R11: Assessment 09 & Dynamic memory allocation

Today’s Topics

• Assessment 09
• Dynamic memory allocation
• implement your malloc & free

2

Assessment 09

3

Q1 Linker

Which of the following statements are true about the C linker?
A. The linker takes as input C source code and outputs a binary executable file.
B. The linker has knowledge of the types of all variables declared or accessed in

an object file.
C. The linker performs symbol resolution and relocation to replace each symbol

reference to the symbol's address.
D. If x is a non-static global variable defined in source file obj.c, then x appears in

the symbol table of the corresponding object file obj.o
E. If x is a non-static local variable defined in source file obj.c, then x appears in

the symbol table of the corresponding object file obj.o
F. If x is a function defined in source file obj.c, then x appears in the symbol table

of the corresponding object file obj.o

4

Linker takes .o as input

What symbol table contains

Symbol table contains:
1. Global symbols

Non-static global variables & functions
2. Local symbols

Static functions & global variables
3. External symbols

External functions & variables defined in other “.o” files

5

Does not
contain local

variables

Q1 Linker

Which of the following statements are true about the C linker?
A. The linker takes as input C source code and outputs a binary executable file.
B. The linker has knowledge of the types of all variables declared or accessed in

an object file.
C. The linker performs symbol resolution and relocation to replace each symbol

reference to the symbol's address.
D. If x is a non-static global variable defined in source file obj.c, then x appears in

the symbol table of the corresponding object file obj.o
E. If x is a non-static local variable defined in source file obj.c, then x appears in

the symbol table of the corresponding object file obj.o
F. If x is a function defined in source file obj.c, then x appears in the symbol table

of the corresponding object file obj.o

6

It has no knowledge of local variables

Non-static globals & function definition vs
declaration
• Normally need to define / declare before use
• Define in one file; declare in other files
• All resolve to the only definition

• Global variables:

• Functions:

7

extern int func(); declaration

int func(); declaration

int func() { … } definition

extern int a; declaration

int a; definition

int a=xxx; definition

Defining multiple times
=> name collision

Abnormally, C supports using a
function without definition/declaration

(Nasty! Banned by C++)

C’s name collision resolution rule

strong symbols name collision resolution

>=2 link error

1 resolve to strong symbol

0 resolve to arbitrary one

8

Q2 Linking vs. compile errors

To generate the executable file, the following 3 steps are performed:
step-1: gcc -c foo.c
step-2: gcc -c main.c
step-3: gcc foo.o main.o
Which of the following statements are true:
A. There is a compilation error when performing step-1
B. There is a compilation error when performing step-2
C. There is a linking error when performing step-3
D. All 3 steps can be performed successfully. When running ./a.out, the output is 2
E. All 3 steps can be performed successfully. When running ./a.out, the output is 1

9

x not declared before use

Select C or not, we give full mark

Q3 Linking vs. compile errors

This question is the same as Q2, except the main.c file has
been changed to
Which of the following statements are true:
A. There is a compilation error when performing step-1
B. There is a compilation error when performing step-2
C. There is a linking error when performing step-3
D. All 3 steps can be performed successfully. When running ./a.out, the

output is 2
E. All 3 steps can be performed successfully. When running ./a.out, the

output is 1

10

resolved to the only definition of x
in foo.c

Q4 Linking vs. compile errors

This question is the same as Q2, except the main.c file has
been changed to
Which of the following statements are true:
A. There is a compilation error when performing step-1
B. There is a compilation error when performing step-2
C. There is a linking error when performing step-3
D. All 3 steps can be performed successfully. When running ./a.out, the

output is 2
E. All 3 steps can be performed successfully. When running ./a.out, the

output is 1

11

2 non-static global definitions =>
Name collision!

Q4 Linking vs. compile errors

This question is the same as Q2, except the main.c file has
been changed to
Which of the following statements are true:
A. There is a compilation error when performing step-1
B. There is a compilation error when performing step-2
C. There is a linking error when performing step-3
D. All 3 steps can be performed successfully. When running ./a.out, the

output is 2
E. All 3 steps can be performed successfully. When running ./a.out, the

output is 1

12

2 strong symbols
=> link error

Q5 Linking vs. compile errors

This question is the same as Q2, except the main.c file has
been changed to
Which of the following statements are true:
A. There is a compilation error when performing step-1
B. There is a compilation error when performing step-2
C. There is a linking error when performing step-3
D. All 3 steps can be performed successfully. When running ./a.out, the

output is 2
E. All 3 steps can be performed successfully. When running ./a.out, the

output is 1

13

static => 2 different ”x” => no
name collision

Q6 Linking vs. compile errors

This question is the same as Q2, except the main.c file has
been changed to
Which of the following statements are true:
A. There is a compilation error when performing step-1
B. There is a compilation error when performing step-2
C. There is a linking error when performing step-3
D. All 3 steps can be performed successfully. When running ./a.out, the

output is 2
E. All 3 steps can be performed successfully. When running ./a.out, the

output is 1

14

Uninitialized => Weak symbol
=> resolved to x in foo.c

Q7 Basic malloc

Which of the following statements are true w.r.t. malloc in C?
A. Every call to malloc results in the memory allocator making a syscall

(e.g. sbrk) to request memory from OS.
B. There is a special x86 instruction to handle malloc.
C. One must use the malloc/free functions provided by C stdlib and

cannot not use any other malloc library.
D. malloc allocates space on the heap memory region of the running

program.
E. malloc allocates space on the stack memory region of the running

program.

15

Q8 Malloc design

Which of the following are true w.r.t. C's dynamic memory allocator design?
A. The design can move previously allocated space to a different location to

reduce fragmentation.
B. The design can assume that users strictly alternate calls to malloc and

free.
C. The design can assume that the argument of free is the return value of

some previous malloc calls.
D. The design can invoke arbitrary <stdlib.h> functions including standard

library's malloc/free library calls.
E. None of the above.

16

Q9 Alignment

In order to ensure that the payload address is 16-byte aligned, we enforce
the rule that the payload size allocated must be a multiple of 16 bytes.

Given a requested allocation of sz bytes in size (aka malloc(unsigned long
sz)), which of the following C statement can round sz to the nearest multiples
of 16?

A. sz = sz / 16;

B. sz = sz + sz % 16;

C. sz = sz + (sz % 16);

D. sz = sz + 16 - (sz % 16);

E. sz = ((size + 0xf) & ~0xf);

17

• Result >= input sz

• Result % 16 == 0

Return result nearest to input sz

result < input sz

sz=1, result=2 not multiple of 16

same

sz=16, result=32, but 16 is nearer

Q9 Alignment

In order to ensure that the payload address is 16-byte aligned, we enforce
the rule that the payload size allocated must be a multiple of 16 bytes.

Given a requested allocation of sz bytes in size (aka malloc(unsigned long
sz)), which of the following C statement can round sz to the nearest multiples
of 16?

A. sz = sz / 16;

B. sz = sz + sz % 16;

C. sz = sz + (sz % 16);

D. sz = sz + 16 - (sz % 16);

E. sz = ((size + 0xf) & ~0xf);

19

size + 15 Clear the lowest 4 bits:

- (size + 15) % 16

R = size + 15 – (size + 15) % 16

Q9 Alignment

In order to ensure that the payload address is 16-byte aligned, we enforce
the rule that the payload size allocated must be a multiple of 16 bytes.

Given a requested allocation of sz bytes in size (aka malloc(unsigned long
sz)), which of the following C statement can round sz to the nearest multiples
of 16?

A. sz = sz / 16;

B. sz = sz + sz % 16;

C. sz = sz + (sz % 16);

D. sz = sz + 16 - (sz % 16);

E. sz = ((size + 0xf) & ~0xf);

20

size + 15 Clear the lowest 4 bits:

- (size + 15) % 16

R = size + 15 – (size + 15) % 16

1. size % 16 == 0: R = size + 15 – 15 = size; R % 16 == 0

2. size % 16 != 0:

Q9 Alignment

In order to ensure that the payload address is 16-byte aligned, we enforce
the rule that the payload size allocated must be a multiple of 16 bytes.

Given a requested allocation of sz bytes in size (aka malloc(unsigned long
sz)), which of the following C statement can round sz to the nearest multiples
of 16?

A. sz = sz / 16;

B. sz = sz + sz % 16;

C. sz = sz + (sz % 16);

D. sz = sz + 16 - (sz % 16);

E. sz = ((size + 0xf) & ~0xf);

21

size + 15 Clear the lowest 4 bits:

- (size + 15) % 16

R = size + 15 – (size + 15) % 16

1. size % 16 == 0: R = size + 15 – 15 = size; R % 16 == 0

2. size % 16 != 0:

… …

0 16 16 * n 16 * (n + 1)

Q9 Alignment

In order to ensure that the payload address is 16-byte aligned, we enforce
the rule that the payload size allocated must be a multiple of 16 bytes.

Given a requested allocation of sz bytes in size (aka malloc(unsigned long
sz)), which of the following C statement can round sz to the nearest multiples
of 16?

A. sz = sz / 16;

B. sz = sz + sz % 16;

C. sz = sz + (sz % 16);

D. sz = sz + 16 - (sz % 16);

E. sz = ((size + 0xf) & ~0xf);

22

size + 15 Clear the lowest 4 bits:

- (size + 15) % 16

R = size + 15 – (size + 15) % 16

1. size % 16 == 0: R = size + 15 – 15 = size; R % 16 == 0

2. size % 16 != 0:

… …

0 16 16 * n 16 * (n + 1)

size aligned

Q9 Alignment

In order to ensure that the payload address is 16-byte aligned, we enforce
the rule that the payload size allocated must be a multiple of 16 bytes.

Given a requested allocation of sz bytes in size (aka malloc(unsigned long
sz)), which of the following C statement can round sz to the nearest multiples
of 16?

A. sz = sz / 16;

B. sz = sz + sz % 16;

C. sz = sz + (sz % 16);

D. sz = sz + 16 - (sz % 16);

E. sz = ((size + 0xf) & ~0xf);

23

size + 15 Clear the lowest 4 bits:

- (size + 15) % 16

R = size + 15 – (size + 15) % 16

1. size % 16 == 0: R = size + 15 – 15 = size; R % 16 == 0

2. size % 16 != 0:

… …

0 16 16 * n 16 * (n + 1)

size + 15

gap = (size + 15) % 16

Q9 Alignment

In order to ensure that the payload address is 16-byte aligned, we enforce
the rule that the payload size allocated must be a multiple of 16 bytes.

Given a requested allocation of sz bytes in size (aka malloc(unsigned long
sz)), which of the following C statement can round sz to the nearest multiples
of 16?

A. sz = sz / 16;

B. sz = sz + sz % 16;

C. sz = sz + (sz % 16);

D. sz = sz + 16 - (sz % 16);

E. sz = ((size + 0xf) & ~0xf);

24

size + 15 Clear the lowest 4 bits:

- (size + 15) % 16

R = size + 15 – (size + 15) % 16

1. size % 16 == 0: R = size + 15 – 15 = size; R % 16 == 0

2. size % 16 != 0:

… …

0 16 16 * n 16 * (n + 1)

size + 15 – (size + 15) % 16

Q10 Set block status

Suppose in the implicit list design, the block header is defined as (Lecture
slides 22 and 27). Please write a function to set the status of the chunk while
leaving its size unchanged? What's the body of the set_status function?

A. h->size_and_status |= (unsigned long)status;

B. h->size_and_status &= (unsigned long)status;

C. h->size_and_status = (h->size_and_status & ~0x1) | (unsigned
long)status;

D. h->size_and_status = ((h->size_and_status >> 1) << 1) | (unsigned
long)status;

E. h->size_and_status ^= (unsigned long)status;

25

Q10 Set block status

Suppose in the implicit list design, the block header is defined as (Lecture
slides 22 and 27). Please write a function to set the status of the chunk while
leaving its size unchanged? What's the body of the set_status function?

A. h->size_and_status |= (unsigned long)status;

B. h->size_and_status &= (unsigned long)status;

C. h->size_and_status = (h->size_and_status & ~0x1) | (unsigned
long)status;

D. h->size_and_status = ((h->size_and_status >> 1) << 1) | (unsigned
long)status;

E. h->size_and_status ^= (unsigned long)status;

26

size status (1bit)

Keep the highest bits.

Q10 Set block status

Suppose in the implicit list design, the block header is defined as (Lecture
slides 22 and 27). Please write a function to set the status of the chunk while
leaving its size unchanged? What's the body of the set_status function?

A. h->size_and_status |= (unsigned long)status;

B. h->size_and_status &= (unsigned long)status;

C. h->size_and_status = (h->size_and_status & ~0x1) | (unsigned
long)status;

D. h->size_and_status = ((h->size_and_status >> 1) << 1) | (unsigned
long)status;

E. h->size_and_status ^= (unsigned long)status;

27

size status (1bit)

Keep the highest bits.

Dynamic Memory Allocation
For when static memory isn’t enough

Malloc using Implicit list

1. Structure of implicit list
2. Malloc

1. Where to place an allocation?
2. Splitting a free block

3. Free
1. Coalescing a free block

4. Realloc

Malloc using Implicit list (lab4)

• Structure of implicit list
• Implicit list means that it does not use pointers explicitly, but it can find the

next chunk just like a linked list.

• A chunk:

size

status

Payload
(data+padding)

header
(16 bytes)

Application data
(allocated blocks
only)
(multiple of 16
bytes)

e.g. p=malloc(20);

32B

16B

Malloc using Implicit list

• Malloc:
• Find a large enough free chunk

• Ask_os_for_chunk if not found
• Place it

• Split
• Set status & size

31

Malloc using Implicit list – find the chunk

• Where to place an allocation?
• Different algorithms:
• First fit à easy & fast; cause fragmentation at beginning of the heap
• Best fit à good for utilization; slower
• Next fit à faster than first fit; even worse fragmentation

Malloc using Implicit list – place it

• Splitting a free block
• Compute the remaining size
• If < MIN_CHUNK_SZ

• return // don’t split
• else:

• Split into 2 chunks, and set their size & status

How large is it? size
status

Payload
(data+padding)

header
(16 bytes)

Application data
(allocated blocks
only)
(multiple of 16
bytes)

>=
16B

16B

Malloc using Implicit list – free

free(void *p):
• h=payload2header(p) // get chunk pointer
• Set status of the chunk h
• Coalescing a free block: Merge h with its next free neighbor
• If next_chunk(h) is free {

• Increase h’s size by next chunk’s size
• }
• Any problem with the impl.? Can we do better?

• Use while instead of if

free

free

Alloc

Alloc

Alloc

Alloc

h
nh
nh2

mergefree

free

free

free

Alloc

Alloc

Alloc

h
nh
nh2

mergefree
merge

free

Why will there be multiple consecutive free
chunks?
• Free h2
• Free h3
• Free h1
• Root cause:
• Cannot coalesce

with previous chunk

35

Alloc
Alloc
Alloc
Alloc
Alloc
Alloc

h1
h2
h3

Alloc
Free
Alloc
Alloc
Alloc
Alloc

Alloc
Free
Free
Alloc
Alloc
Alloc

Free
Free
Free
Alloc
Alloc
Alloc

no
merge

Why will there be multiple consecutive free
chunks?
• Free h2
• Free h3
• Root cause:
• Cannot coalesce

with previous chunk

36

Cannot check the
status of the previous

chunk.

Solution
(not required in lab4

when implementing
implicit list)

size

status

Payload
(data+padding)

size

status

header
(16 bytes)

(multiple of 16
bytes)

footer
(16 bytes)

Malloc using Implicit list – realloc

• Realloc(void *p, size_t size): here only discuss p != NULL
• Resize p’s memory region to the given size

• Example use case: p points to an array;
• array too small for inserting new element => increase the array size
• Elements deleted => shrink the array size

• Brute force implementation:
• q=Malloc(size);
• Copy p to q;
• Free(p);

• Problem?
• Inefficient. Consider shrinking case.

Malloc using Implicit list – realloc

• h=payload2header(p); // get current chunk pointer
• Case 1. Shrinking
• Split Alloc

…

h
alloc

free

Malloc using Implicit list – realloc

• h=payload2header(p); // get current chunk pointer
• Case 2. Expanding
• Case 2.1. there is enough space in the next chunk (nh) to accommodate the

increased size
• Utilize the space in the next chunk. alloc

free

h

nh
alloc

Malloc using Implicit list – realloc

• h=payload2header(p); // get current chunk pointer
• Case 2. Expanding
• Case 2.2. next chunk is allocated or there is no enough space

• Fall back to the brute force approach
alloc

alloc

h

nh

Malloc using Implicit list

• Performance tip:
• set debug to false
• wrap any sanity check (e.g., assertions) you wrote with if (debug). E.g.,

if (debug) {
mm_checkheap(true);

}

41

Malloc using Explicit free list

• Implicit list is slow: each malloc can be O(#chunks)
• Explicit free list: O(#free chunks)
• Chain the free chunks only into a list
• Important: list not necessarily in the same order as the chunks

free

Alloc

Alloc

Alloc

free

h1

h2

h3

h4
h5

Free_head

Link list: h1 <--> h5

Malloc using Explicit free list

• Implicit list is slow: each malloc can be O(#chunks)
• Explicit free list: O(#free chunks)
• Chain the free chunks only into a list
• Important: list not necessarily in the same order as the chunks

free
Alloc

Alloc

Alloc
free

h1
h2

h3

h4
h5

Free_head

free

Malloc using Explicit free list

• Implicit list is slow: each malloc can be O(#chunks)
• Explicit free list: O(#free chunks)
• Chain the free chunks only into a list
• Important: list not necessarily in the same order as the chunks

free

Alloc

Alloc

Alloc

free

h1

h2

h3

h4
h5

Free_head

Link list: h4 <--> h1 <--> h5
When free a new block:
• Update the head
• Always insert the new free

block at the head

free

Malloc using Explicit free list

• Implicit list is slow: each malloc can be O(#chunks)
• Explicit free list: O(#free chunks)
• Chain the free chunks only into a list
• Important: list not necessarily in the same order as the chunks

free

Alloc

Alloc

Alloc

free

h1

h2

h3

h4
h5

Free_head

Link list: h4 <--> h1 <--> h5
When free a new block:
• Update the head
• Always insert the new free

chunk at the head

free

Challenge: how to coalesce the consecutive free chunks?
• h4 and h5 are not adjacent in the explicit link list
• Traverse the link list?
• No! Borrow the idea from implicit list.

• Using header and footer

Malloc using Explicit free list

• The structure

size | status
header padding

next
prev

Payload
(data+padding)

size | status

padding

p

size | status
header padding

Payload
(data+padding)

size | status
padding

header
(16 bytes)

(multiple of 16
bytes)

footer
(16 bytes)

header
(16 bytes)

(multiple of 16
bytes)

footer
(16 bytes)

16 bytes

Allocated chunk: Free chunk:

Implement Malloc using Explicit free list
• Malloc <malloc(size)>

• find a free chunk (in your linked list – linked list traverse)

• delete this chunk from the linked list

• ask the OS for chunk if not found

• Split chunk

• If split succeeds

• set 1
st

chunk status to allocated

• insert the 2
nd

chunk to the linked list

• return pointer to the payload

free

Alloc

free

Alloc

free

h1

h2

h3

h4

h5

Link list: h1 <---> h5 <---> h3

alloc

free

h3_1

h3_2

Link list: h1 <---> h5

Link list: h3_2 <--> h1 <---> h5

Insert here

Implement Malloc using Explicit free list
• Free <free(p)>
• go to the header from payload
• free the chunk

• set this chunk status to be free
• initialize the next & prev pointer

• Coalesce free chunks
• Use footer to find if consecutive chunks are free
• If so, delete it from the linked list and merge

• insert this new free block into the linked list

free

Alloc

free

Alloc

free

h1

h2

h3

h4
h5

alloc
free

h3_1

h3_2

Link list: h3_2 <--> h1 <--> h5
=> h4 <--> h3_2 <--> h1 <--> h5

free free

Need to coalesce
these three.

How to merge the nodes which are not adjacent to each other in the list?

Implement Malloc using Explicit free list
free

Alloc

free

Alloc

free

h1

h2

h3

h4

h5

alloc

free

h3_1

h3_2
Link list: h3_2 <--> h1 <--> h5 <--> h’
Þ h4 <--> h3_2 <--> h1 <--> h5 <--> h’

Þ h3_2 (with updated size) <--> h1 <--> h’
free

How to merge the nodes which are not adjacent to each other in the list?
=> Keep 1 node, and delete others

