
CSO-Recitation 11
CSCI-UA 0201-007

R11: Assessment 10 & Combinational logic

Today’s Topics

• Assessment 10
• Lab-4
• Combinational logic
• How to build a combinatorial logic circuit
• MUX

2

Assessment 10

3

Q1 Implicit list

Suppose your implicit list design uses both header and footer. Both have the following type
(Lecture slides 30):
• get_status()
• get_size()
• set_size_status()
• set_status()
• set_size()
• payload2header()
• payload2footer()
• footer2header()
• curr2prev()
• …

Basic helper
Find in lecture slides

4

Q1.1 payload2header example

• Suppose a user invokes free(p) using pointer p whose value is 0x789012345670.
What is the memory address for the start of the chunk that contains the allocated
space (payload) that should be freed? (To faciliate autograding, please write your
answer in hex with prefix 0x, ignoring leading zeros and using lowercase letters)

• 0x789012345660 size | status

header padding

Payload
(data+padding)

size | status

padding

header
(16 bytes)

5

p=0x789012345670

0x789012345660

Q1.2 payload2header

`payload2header` takes as argument a pointer to the start of the
payload in the chunk, and returns a pointer to the chunk's header.
Which of the following C statement to use for the missing line?
A. h = (header *)p - sizeof(header);
B. h = (header *)p - 1;
C. h = (header *)((char *)p - sizeof(header));
D. h = (char *)p - 1;
E. None of the above.

6

pointer arithmetic:
-1 ó -sizeof(header) bytes

pointer arithmetic:
-1 ó -sizeof(char)=1 bytes
-sizeof(header) ó -sizeof(header) bytes

logic: h=p-(sizeof(header) bytes)

Q1.3 header2footer example

• Suppose pointer variable h points to the beginning of a chunk and has

value 0x7890123456a0. If the total size of the chunk is 1KB (including

header and footer fields), then what is the memory address for the

footer of this chunk?

• 0x789012345a90

7

size | status

header padding

Payload

(data+padding)

size | status

padding

footer

(16B=0x10B)

0x789012345a90

h=0x7890123456a0

chunk size

(1KB=0x400B)

0x789012345aa0

Q1.4 header2footer

`header2footer` takes as argument a pointer to the start of the chunk, and returns a pointer to the
same chunk's footer.
Which of the following C statement to use for the missing line? Note that `get_size` is a helper
function that returns the chunk size encoded in the header/footer field size_n_status.
A. f = h + 1;
B. f = h - 1;
C. f = h + get_size(h);
D. f = (header *)((char *)h + get_size(h));
E. f = h - get_size(h);
F. f = (header *)((char *)h - get_size(h));
G. f = (header *)((char *)h + get_size(h) - sizeof(header));
H. f = (header *)((char *)h - get_size(h) + sizeof(header));
I. None of the above.

8

logic: f=h
+(chunk_size bytes)
-(footer_size bytes)

Q: how many bytes
does it step forward?

cast to char: +1 <=> +1 byte

Q1.5 footer2header example

• Suppose pointer variable f points to the beginning of a chunk's footer

and has value 0x789012345a90. If the total size of the chunk is 1KB

(including header and footer fields), then what is the memory address

for the header of this chunk?

• 0x7890123456a0

9

size | status

header padding

Payload

(data+padding)

size | status

padding

footer

(16B=0x10B)

f=0x789012345a90

0x7890123456a0

chunk size

(1KB=0x400B)

0x789012345aa0

Exactly the same as Q1.3

Q1.6 footer2header

`footer2header` takes as argument a pointer to the footer of the chunk, and returns a pointer to the
same chunk's header.
Which of the following C statement to use for the missing line? Note that `get_size` is a helper
function that returns the chunk size encoded in the header/footer field size_n_status.
A. h = f + 1;
B. h = f - 1;
C. h = f + get_size(f);
D. h = (header *)((char *)f + get_size(f));
E. h = f - get_size(f);
F. h = (header *)((char *)f - get_size(f));
G. h = (header *)((char *)f + sizeof(header) - get_size(f));
H. h = (header *)((char *)f - sizeof(header) + get_size(f));
I. None of the above.

10

logic: h=f
+(footer_size bytes)
-(chunk_size bytes)

Q1.7 curr2prev example

• Suppose pointer variable h points to the beginning of some chunk
and has value 0x789012345aa0. Suppose this chunk has size 4KB and
its previous chunk has size 1KB. What is the memory address for the
beginning of its previous chunk?
• 0x7890123456a0 • logic: h - size of the previous chunk

• 0x789012345aa0 – 1KB
• 0x789012345aa0 – 0x400 = 0x7890123456a0

11

Q1.8 curr2prev example

`curr2prev` takes as argument a pointer to the current chunk's header, and returns
a pointer to the previous chunk's header.
Which of the following C statement to use for the missing line? Note that
footer2header is the helper function that returns a pointer to the chunk's header
given a pointer to the same chunk's footer.
A. prev_footer = curr -1 ;
B. prev_footer = curr - sizeof(header);
C. prev_footer = (header *)((char *)curr - sizeof(header));
D. prev_footer = curr - 2;
E. prev_footer = curr - 2*sizeof(header);
F. prev_footer = (header *)((char *)curr - 2*sizeof(header));
G. None of the above.

curr2prev
• curr_header2prev_footer
• prev_footer2prev_header -> footer2header

12

curr_header2prev_footer
• curr - (sizeof(header) bytes)
• ó curr - 1

size | status

padding

size | status

header padding
current_header

prev_footer

Q2 Explicit list

Which of the following statements are true about explicit list?
A. The explicit list design explicitly chains together all chunks of the heap

into a linked list.
B. The explicit list design explicitly only chains together all free chunks of

the heap into a linked list.
C. The explicit list design incurs more memory overhead than the implicit

list design because it uses extra space in the header to store the
next/prev fields.

D. malloc(...) in the explicit list design is faster than that of implicit list
because it does not need to scan over allocated chunks.

E. free(...) in the explicit list design is faster than that of implicit list because
it does not need to scan over allocated chunks.

Q2 Explicit list, Choice C

size | status
header padding

Payload
(data+padding)

size | status
padding

Explicit List
Allocated

size | status
header padding

Payload
(data+padding)

size | status
padding

Implicit List
Allocated

No difference

Explicit List
Allocated

Q2 Explicit list, Choice C

size | status
header padding

Payload
(data+padding)

size | status
padding

free

next

prev

size | status
header padding

Payload
(data+padding)

size | status
padding

Implicit List
Allocatedfree

• Explicit List reuses the
payload space to store
next/prev

• No extra space needed!

Explicit List
Allocated

Q2 Explicit list, Choice C

size | status
header padding

Payload
(data+padding)

size | status
padding

>=16 bytes

free

next

prev
16 bytes

size | status
header padding

Payload
(data+padding)

size | status
padding

Implicit List
Allocatedfree

• Explicit List reuses the
payload space to store
next/prev

• No extra space needed!

Q3 Buddy system

Which of the following statements are true about the buddy system?
A. All chunks have sizes that are powers-of-2.
B. During free(...), coalescing only happens once by merging the freed

chunk with its buddy of the same size if the buddy is free.
C. During free(...), coalescing is done recursively by repeatedly merging the

freed chunk with its buddy of the same size and repeating the merge
process for the resulting larger free chunk until its buddy is no longer
free.

D. The design maintains multiple free lists each of which contains free
chunks of the same (powers-of-2) size.

E. The design maintains a single free list containing all free chunks.

A special case of segregated list:
• each freelist has identically-sized blocks
• block sizes are power of 2

allocate:
• Recursive split in half
free:
• Recursively merge

Q3 Buddy system

4KB

2KB 2KB

1KB 1KB 2KB

malloc (e.g., A=malloc(0.8KB))
1. round to powers of 2 (0.8KB -> 1KB)
2. find the non-empty free list with closest chunk size

1. found 4KB list
3. Recursively split until having right size
4. Allocate

A 1KB 2KB

4KB 2KB 1KB …
->h1 NULL NULL NULL

NULL ->h1->h2 NULL NULL

h2

h1

h3

NULL ->h2 ->h1->h3 NULL

NULL ->h2 ->h3 NULL

Free Lists

Assume the heap is 4KB, and initially all free

Q3 Buddy system

A 1KB 1KB C

Free
1. set status bit
2. recursively coalesce with buddies

A 1KB B C

4KB 2KB 1KB …
NULL NULL ->h2 NULL

NULL NULL ->h3->h2 NULL

h2h1 h3
Free Lists

h4

A 1KB 2KB NULL ->h3 ->h2 NULL

4KB h1 NULL NULL NULL

No coalesce as they are not buddies of each other

• Quick rule for checking if 2 chunks are buddies: if
they are directly split from the same chunk, they
are buddies

• e.g., h1&h2, h3&h4 are buddies

Lab-4

22

Lab4 FAQ

• Check if h is the last chunk
• Check if heap is empty
• Please read https://github.com/nyu-cso-

fa21/lab4/blob/master/memlib.h and https://github.com/nyu-cso-
fa21/lab4/blob/master/memlib.c

• Tip: reuse your code
• e.g., “get the first chunk’s address” is implemented in next_chunk, call

next_chunk in other places you need

next_chunk(NULL):
• If the heap is empty: return NULL;
• Else, return the first chunk;

https://github.com/nyu-cso-fa21/lab4/blob/master/memlib.h
https://github.com/nyu-cso-fa21/lab4/blob/master/memlib.c

Lab4 FAQ
free
Alloc

Alloc

Alloc
free

h1
h2

h3

h4
h5

Free_head

free

h4->next == h1, not physically consecutive!

next_chunk(h4) == h5

Combinational logic
Building Blocks

28

Basics

Boolean Algebra Exercise

• Try to simplify the following equations
• xy+xyz
• x(x+y)

Boolean Algebra Exercise

• Try to simplify the following equations
• xy+xyz
• x(x+y)

=xy(1+z)=xy

=x+xy=x(1+y)=x

Boolean functions

• Boolean function: takes in boolean inputs and return boolean output
• There are three main ways to represent boolean functions

1. As a circuit diagram (built from gates)
2. As a set of boolean equations/expressions
3. As a truth table

! "# + !̅

A B C
0 0 1
0 1 1
1 0 1
1 1 0

34

More gates

• You are already familiar with the most important ones!
• AND, OR, NOT

• All boolean functions can be written with these three building blocks!
• There are others, like XOR and NAND

• A NAND B means NOT(A AND B)
• All boolean functions can be written with just NAND!!!

• e.g. NOT(A) == NAND(A,A); AND(A,B) == (A NAND B) NAND (A NAND B)

35

Combinational Logic Design

• Basic logic design
• Logic circuits == Boolean functions

• Combinational Logic circuit: a type of circuit without memory
• That is, the outputs are a function ONLY of the current inputs, not of anything

in the past

• How to build a combinational logic circuit with AND, OR and NOT
• Step1: Specify the truth table
• Step2: Output is the sum of products

36

Implement XOR with Combinational Logic

A B Out

0 0 0

0 1 1

1 0 1

1 1 0

Step1: specify the truth table
• Enumerate every possible inputs (2^N)
• Compute the outputout =A XOR B

Implement XOR with Combinational Logic

A B Out

0 0 0

0 1 1

1 0 1

1 1 0

Step2: Result is the sum (OR) of products
(clauses, i.e. a AND b AND …)
• Look for rows of output=1

• write a clause for each row
anywhere an input a is 1, write a
Anywhere an input a is 0, write ~a

• AND them together

• OR clauses together
• out=(~A)*B + A*(~B)

out =A XOR B

(~A)*B

A*(~B)

Multiplexor (MUX)

• A multiplexor is a device which takes in multiple signals and outputs a
single signal
• The purpose of using a multiplexer is to make full use of the capacity

of the communication channel and greatly reduce the cost of the
system

M
UX

42

Multiplexor (MUX)

• 4-to-1 Multiplexor
• It can be noted that 2^N input signals require N select signals

2^N input
signals

N selectors

43

