
CSO-Recitation 13
CSCI-UA 0201-007

R13: Assessment 11



Assessment 11



Q1 Boolean laws

Which of the following Boolean laws hold? Below, A, B, C could refer to 
either a Boolean variable or a Boolean expression
A. R1: A+0=A
B. R2: A+0=0
C. R3: A+1=1
D. R4: A+1=A
E. R5: A⋅(B+C)=A⋅B + A⋅C
F. R6: A + #̅=1
G. R7: A ⋅ #̅ = 0

Basic law: 
• A ⋅0 =0, A ⋅1=A
• A+0=A, A+1=1

Distribution law

Inverse law



Q2 Simplify boolean expression

• Simplify boolean expression (A+B) ⋅(#̅ + $%).
• You may write `*` for ⋅, and write `barA` for #̅ (or `barB` or $%)
• (A+B)*(barA+barB)
• =(A+B)*barA + (A+B)*barB
• =barA*A + barA*B + barB*A + barB*B
• =0+barA*B+barB*A+0
• =barA*B+barB*A

Distribution law

Distribution law

Inverse law

Basic law



Q3 Simplify boolean expression

• When simplifying the Boolean expression in Q2, which of the Boolean laws 
in shown Q1 are needed?

A. R1
B. R2
C. R3
D. R4
E. R5
F. R6
G. R7



Q4 Boolean circuit

• If you are to use a single logic gate to implement the simplified 

expression in Q2. Which gate should you use?

A. AND

B. OR

C. NOR

D. NAND

E. XOR

F. None of the above

XOR(A,B) = A*barB + B*barA

NAND(A,B) = bar(A*B) = barA+barB



Q5 Combinatorial circuit

• In this question, you are asked to implement a combinatorial circuit 
that takes a 4-bit input and outputs a single bit indicating whether the 
unsigned 4-bit integer represented by b3b2b1b0 is a prime number or 
not.
• Q5.1 Truth table
• How many total rows does the truth table corresponding to the 4-bit 

prime number detector circuit have?
• 16

#row of truth table:
• have 4 input signals, each represents 1 bit
• how many bit patterns?
• 2^4 = 16



Q5.2 Truth Table

• How many of the rows in the truth table of Q5.1 corresponds to the 
output bit value o=1? 
• 6

• Prime: 2, 3, 5, 7, 11, 13



Q5.3 Product of terms

• The prime number detector circuit can be built as a sum of products 
where each product term corresponds to a row in Q5.2. Please write 
the product term that corresponds to the input b3b2b1b0 = (1011)2
• B3 Barb2 b1 b0

• (1011)2 = 11, is a prime
• output = 1

• b3, b1, b0 = 1, remain the same
• b2 = 0, => Barb2



Q5.4 ROM

• If you are to using a ROM to implement the prime number detector 
circuit. What is the minimal size of the ROM required?
• 4 variables
• h = 2^4 = 16
• i.e. #input bit patterns

• w = 1 (one bit to indicate whether
this is a prime number or not)



Q5.4 ROM

• Following Q5.4, what is the value of the ROM entry at index or 
address (1010)2?
• 0

• (1010)2 = 10, not a prime
• output = 0



Q6 Ripple carry

• If a 1-bit adder's gate delay is 2, then what is the gate delay of a 32-bit 
ripple carry?
• 64 ready at t=0

ready at t=2

ready at t=4

ready at t=6

ready at t=2*32
a32
b32 ALU32 Result 32



Lab 4 Optimization



Simple implicit list implementation
• First-fit algorithm
• Simply optimized realloc function (3 cases):
• Shrink: directly decrease the size
• Expand:
• Next chunk is a free chunk, and the size is sufficient: utilize the next
chunk

• Otherwise, free the current chunk and allocate a new one



Simple implicit list implementation

Utilization is low.

Even though the
utilization is high,
performance is low



Simple implicit list implementation



Simple implicit list implementation

First try to optimize these two traces
(realloc trace)



realloc trace



realloc trace

512, a

128, a

Heap start

512, f

640, a

128, a

384, f

128, f



realloc trace

512, a

128, a

Heap start

512, f

640, a

128, a

384, f

128, f

640, f

768, a



realloc trace

640, a…

768, a768, f

896, a



realloc trace - optimization

512, a

128, a

Heap start

512, f

640, a

128, a

384, f

128, f

128, a
Ask for os for the
remaining size
(768 – 640)



realloc trace - optimization

512, a

128, a

Heap start

512, f

640, a

128, a

384, f

128, f

128, a
Ask for os for the
remaining size
(768 – 640)

768, a



realloc trace - optimization

512, a

128, a

Heap start

512, f

640, a

128, a

384, f

128, f

128, a

768, a

All malloc(128) will be put
near the start of the heap



realloc trace - optimization

512, a

128, a

Heap start

512, f

640, a

128, a

384, f

128, f

128, a

768, a
All realloc will just increase
the size of the last chunk Increase

when realloc



realloc trace - optimization

Before:

After:



binary trac

a 0 64
a 1 448
a 2 64
a 3 448
a 4 64
a 5 448
…
f 1
f 3
f 5
…
a 4000 512
a 4001 512
a 4002 512
a 4003 512
…

64, a

448, a

64, a

448, a

…



binary trace

a 0 64
a 1 448
a 2 64
a 3 448
a 4 64
a 5 448
…
f 1
f 3
f 5
…
a 4000 512
a 4001 512
a 4002 512
a 4003 512
…

64, a

448, f

64, a

448, f

…



binary trace

a 0 64
a 1 448
a 2 64
a 3 448
a 4 64
a 5 448
…
f 1
f 3
f 5
…
a 4000 512
a 4001 512
a 4002 512
a 4003 512
…

64, a

448, f

64, a

448, f

…

Too small for 512

512, a

Too small for 512

512, a

…



binary trace - optimization

• We can separate the memory
allocation for small and large chunks 
• Try to put the small chunks together

• JRockit JVM follows this principle
(https://docs.oracle.com/cd/E13150
_01/jrockit_jvm/jrockit/geninfo/diag
nos/garbage_collect.html)

a 0 64
a 1 448
a 2 64
a 3 448
a 4 64
a 5 448
…
f 1
f 3
f 5
…
a 4000 512
a 4001 512
a 4002 512
a 4003 512
…

64, a

448, a

64, a

448, a

…

…

Small chunks

Large chunks



binary trace - optimization

Before:

After:



Other optimization

• To optimize utilization:
• Add footer to fully utilize the free chunks (coalesce adjacent free chunks is
possible)

• To optimize the performance:
• Use segregated and explicit list to find a suitable chunk faster
• Use next fit instead of first fit





Sequential logic
Building Blocks



Sequential Logic

• There is memory
• Outputs depend on prior state as well as the current inputs
• State can be stored and used later

• We rely on clock signals
• Clock signals tell us when things should happen
• We should only write to state when the clock is set a certain way



SR Latch

• Constructed from two NOR gates
• You can either Set the latch (make it remember 1), or Reset it (make it 

remember 0)
• Two inputs: S and R
• Two outputs: Q and NOT Q
• Q is what it remembers, NOT Q is the opposite

• Both S and R cannot be 1 at the same time, or sadness occurs



D Latch

• Constructed from some additional
logic and an SR Latch

• Two inputs: C and D
• You can have the latch remember D as long as C is true
• Two outputs: Q and NOT Q
• Q is what the latch remembers, NOT Q is the inverse

• Ensures that S and R inputs to the SR Latch aren’t both true



D Flip Flop

• Constructed from some additional logic and two D latches
• Same inputs and outputs as D latches
• But, the output is only stored on a chosen clock edge



Finite State Machines



Finite State Machines

• There are a number of states, inputs, and outputs
• To the beat of the clock, we read in inputs and go to new states, and 

set the outputs
• Both the output and the next state are defined by the current state 

and the inputs
• Can be expressed as a flowchart or a truth table



An FSM example

• There are 4 states
• Nodes represent states
• Initial state is 00

• “x/y” on the arrow edge is “transition condition”
• when input=x, follow this edge to transit into the pointed state
• set output=y in the meantime



An FSM example

We are here read input ”0”



An FSM example

move to here
set output=1 read input ”1”



An FSM example

move to here
set output=1



An FSM example

• The corresponding truth table



Another FSM Example

• The NYC Subway Turnstile
• There is a lock controlled by the FSM
• If the user didn’t pay yet then the lock is active and the user can’t 

push through
• If the user pays, the lock unlocks until they push through
• Draw an FSM for this
• Write out a truth table
• Create the circuit



Another FSM Example

current state input next state
(lock / unlock) (pay / push)

Lock Unlock

pay

push

push pay


