
CSO-Recitation 14
CSCI-UA 0201-007

R14: Assessment 13 & ALU & RegFile & Pipeline



Today’s Topics

• Assessment 13
• Review pipelined CPU

2



Assessment 13
Q1 Single-cycle CPU

4



Q1 FSM

In the lecture example on "electronic eyes" (see slide 28 of 
https://nyu-cso.github.io/notes/arch-seq.pdf). The desired pattern of 
lights to be lit up is: left, middle, right, middle, left, middle, right ... 
What is the minimum number of distinct state values needed for a FSM 
to implement this electronic eyes device?
4

5

L M1

RM2

next/ light middle

next/ light rightnext/ light left

next/ light middle

https://nyu-cso.github.io/notes/arch-seq.pdf


Q2 single-cycle CPU

• Q2.1 Data path
• Suppose the RISC-V instruction being executed is add x6, x7, x8, 

where x6 is the destination register, and x7/x8 are the 1st/2nd source 
register operand, respectively.
• What are the values corresponding to Instruction[11-7] that are fed 

into the "write register" pins of the RegisterFile?
• 00110 • Write register à register code

• The code of register xi is i. 
• For example, the code of x5 is (00101)2, 
• x6: (00110)2
• Note: use 5 bits since we have 32 registers

6



Q2.2 Control path

• There are 3 Mux in the Figure whose selectors are to be set by the control 
logic, located at the top-right, bottom-middle, and bottom-right. 
• Which of the following instructions' execution cause the top-right Mux's 

selector to be set to 1?
A. add x6, x7, x8 //x6 = x7+x8
B. beq x6, x7, 100, if x6 and x7 have the same value.
C. beq x6, x7, 100, regardless of whether x6 and x7 have the same value.
D. ld x5, 40(x6) //load a doubleword (8-byte) 

from Memory[x6+40]Memory[x6+40] to register x5
E. addi x6, x7, 200 //x6 = x7+200
F. sd x5, 40(x6) //store a doubleword (8-byte) from 

register x5 to Memory[x6+40]Memory[x6+40]

7



Q2.2 Control path
Control which how to compute 
next PC (SB-type instruction)

9

PC=target address (e.g.
PC+2*100)

PC=PC+4



Q2.2 Control path

• There are 3 Mux in the Figure whose selectors are to be set by the control 
logic, located at the top-right, bottom-middle, and bottom-right. 
• Which of the following instructions' execution cause the top-right Mux's 

selector to be set to 1?
A. add x6, x7, x8 //x6 = x7+x8
B. beq x6, x7, 100, if x6 and x7 have the same value.
C. beq x6, x7, 100, regardless of whether x6 and x7 have the same value.
D. ld x5, 40(x6) //load a doubleword (8-byte) 

from Memory[x6+40]Memory[x6+40] to register x5
E. addi x6, x7, 200 //x6 = x7+200
F. sd x5, 40(x6) //store a doubleword (8-byte) from 

register x5 to Memory[x6+40]Memory[x6+40]

10



Q2.3 Control path

• Continuing from Q2.2, which of the following instructions cause the 
value for the bottom-middle Mux's selector (aka ALUSrc) to be set to 
1?

A. add x6, x7, x8
B. beq x6, x7, 100, if x6 and x7 have the same value.
C. beq x6, x7, 100, regardless of whether x6 and x7 have the same 

value.
D. ld x5, 40(x6)
E. addi x6, x7, 200
F. sd x5, 40(x6)

11



Q2.3 Control path

• Control ALU input
• 1 -> select Imm
• 0 -> select read data 2 (i.e. register) 12



Q2.3 Control path

• Continuing from Q2.2, which of the following instructions cause the 
value for the bottom-middle Mux's selector (aka ALUSrc) to be set to 
1?

A. add x6, x7, x8
B. beq x6, x7, 100, if x6 and x7 have the same value.
C. beq x6, x7, 100, regardless of whether x6 and x7 have the same 

value.
D. ld x5, 40(x6)
E. addi x6, x7, 200
F. sd x5, 40(x6)

13

x6 + 40 (imm)

x7 + 200 (imm)

x6 + 40 (imm)



Q2.3 Control path

14

sd x5, 40(x6)

x6

40

x6 + 40

x5



Q2.5 Control path

• Which of the following instructions cause the value of the RegWrite
input to the RegisterFile to be set?

A. add x6, x7, x8
B. beq x6, x7, 100, if x6 and x7 have the same value.
C. beq x6, x7, 100, regardless of whether x6 and x7 have the same 

value.
D. ld x5, 40(x6)
E. addi x6, x7, 200
F. sd x5, 40(x6)

15



Q2.5 Control path

• Set when we want to store a value 
into a register 

16

If set, write to this
register

With this data



Q2.5 Control path

• Which of the following instructions cause the value of the RegWrite
input to the RegisterFile to be set?

A. add x6, x7, x8
B. beq x6, x7, 100, if x6 and x7 have the same value.
C. beq x6, x7, 100, regardless of whether x6 and x7 have the same 

value.
D. ld x5, 40(x6)
E. addi x6, x7, 200
F. sd x5, 40(x6) write in memory: memory[x6+40]=x5

x5= memory[x6+40]

17

[11:7] rd

[11:7] rd



Q2.5 Control path

• Set when we want to store a value 
into a register 

• With what data?

18

If set, write to this
register

With this data



Q2.4 Control path

• Set when we want to store a value 
into a register 

• With what data?

19

If set, write to this
register

With this data

Data from
memory

Data from
ALU



Q2.4 Control path

• Control what to write 
back to the register

• 1 -> select read data
• ld x5, 40(x6)
• x5=Mem[x6+40]

• 0 -> select ALU result
• add x6, x7, x8
• x6=x7+x8

20



Q2.4 Control path

• Continuing from Q2.3, which of the following instructions cause the 
value for the bottom-right Mux's selector (aka MemToReg) to be set 
to 1?

A. add x6, x7, x8
B. beq x6, x7, 100, if x6 and x7 have the same value.
C. beq x6, x7, 100, regardless of whether x6 and x7 have the same 

value.
D. ld x5, 40(x6)
E. addi x6, x7, 200
F. sd x5, 40(x6)

21



Pipeline
Design & Hazards

23



RISC-V Pipeline

• Pipeline increases throughput by overlapping execution of multiple 
instructions
• We split the instruction memory from the data memory
• Otherwise reading data would delay reading an instruction

• There are 5 stages in the RISC-V pipeline

25



Pipeline latency and throughput

• Latency=max(stage time) * (#stages – 1) + last_stage_time
• e.g., stage times is 

• IF: 200ps; 1st Reg: 100ps; ALU: 200ps; Data access: 200ps; 2nd Reg: 100ps;
• max(stage time)=200ps=clock cycle
• latency=200ps*4+100=900ps

• Throughput=1/max(stage time)=clock rate
• e.g., 1/200ps

26



Assessment 13
Q2&3 Pipelined CPU

28



Q3 Pipelining performance

• clock rate=throughtput=1/max stage time
• old: 1/200
• new: 1/400
• old 2x faster

29

IF ID EX MEM WB max
old 200 100 200 200 100 200
new 400 400



Q3 Pipelining performance

• Suppose the 5 stage pipeline has the following latency for each pipeline 
stage, 200ps (Instruction fetch aka IF), 100ps (Register read aka ID), 200ps 
(ALU operation aka EX), 200ps (Data access aka MEM), 100ps (Register 
write aka WB).
• Suppose we build a new CPU by adding the multiplication function to ALU, 

which causes the ALU latency to increase from 200ps to 400ps. Which of 
the following statements are true?

A. The new CPU has twice the instruction throughput of the original one.
B. The old CPU has twice the instruction throughput as fast as the new one.
C. The ALU latency increase would cause the new CPU to run at a slower 

clock rate than the old CPU.
D. The ALU latency increase would cause the new CPU to run at a faster 

clock rate than the old CPU.

30



Q4 Pipelining performance

• Suppose we change the RISC-V ISA to restrict load/store instructions 
to use a base register only (without an immediate 
offset/displacement). Thus, load/store instructions no longer need to 
use the ALU to compute addresses. As a result, we can change the 
CPU to overlap the data access (aka MEM) and ALU operation (aka EX) 
into one stage, resulting in a 4-stage pipeline. Note that in the merged 
MEM-EX stage, an instruction either performs data access or ALU 
operation, but not both. Hence the merged stage still takes 200ps, 
same as the latency of either MEM or EX in Q2.

31



Q4

33

Merge

IF ID
EX

MEM
WB

Why we can merge them in a single stage?
Because there is no dependency.
No dependency => parallelism

load/store instructions no 
longer need to use the 

ALU to compute addresses



Q4.1 Clock speed

• How does the new 4-stage design affect the clock speed?
A. Clock for 4-stage pipelined CPU must run faster than that in the 5-

stage pipelined CPU.
B. Clock for 4-stage pipelined CPU must run slower than that in the 5-

stage pipelined CPU.
C. Clock for 4-stage pipelined CPU can run at the same speed as that 

of the 5-stage pipelined CPU.

clock cycle (=max) remains unchanged

36

IF ID EX MEM WB max
old 200 100 200 200 100 200

new 200 200



Q4.2 Instruction latency

• How does the new 4-stage design affect the instruction latency?
A. instruction latency (e.g. for load) for 4-stage pipelined CPU is lower 

than that in the 5-stage pipelined CPU.
B. instruction latency (e.g. for load) for 4-stage pipelined CPU is higher 

than that in the 5-stage pipelined CPU.
C. instruction latency (e.g. for load) for 4-stage pipelined CPU is the 

same as that in the 5-stage pipelined CPU.
• Instruction latency:
• 5-stage: 400ps*4+100
• 4-stage:

• 200ps*3+100

37



Pipeline hazard

38

No dependency => parallelism
Pipeline: parallelly execute the instructions:

• For a specific instruction, a stage depends on the previous stage.
• But we can utilize the independency across instructions

• We can execute the next instruction without waiting for the finish of
the previous instruction => pipeline

However, not always
true => hazard.



Pipeline hazard

39

x5 = 0, x6 = 1, x7 = 1
add x5, x6, x7 (x5 = x6 + x7)
add x4, x5, x6 (x4 = x5 + x6)
x4 should be 3

IF EX MEM WBadd x5, x6, x7

add x4, x5, x6 IF ID EX MEM WB

ID



Pipeline hazard

40

x5 = 0, x6 = 1, x7 = 1
add x5, x6, x7 (x5 = x6 + x7)
add x4, x5, x6 (x4 = x5 + x6)
x4 should be 3

IF ID EX MEMadd x5, x6, x7

add x4, x5, x6 IF EX MEM

WB

ID WB



inst

Pipeline hazard

41

x5 = 0, x6 = 1, x7 = 1
add x5, x6, x7 (x5 = x6 + x7)
add x4, x5, x6 (x4 = x5 + x6)
x4 should be 3

IF ID EX MEMadd x5, x6, x7

add x4, x5, x6 IF EX MEM

x6 = 1
x7 = 1

WB

ID WB



ID

Pipeline hazard

42

x5 = 0, x6 = 1, x7 = 1
add x5, x6, x7 (x5 = x6 + x7)
add x4, x5, x6 (x4 = x5 + x6)
x4 should be 3

IF ID EX MEMadd x5, x6, x7

add x4, x5, x6 IF EX MEM

out
= 2

x5 = 0
x6 = 1

Why?

The result hasn’t
written back to x5!

WB

WB

ID



Pipeline hazard

43

x5 = 0, x6 = 1, x7 = 1
add x5, x6, x7 (x5 = x6 + x7)
add x4, x5, x6 (x4 = x5 + x6)
x4 should be 3

IF EX MEMadd x5, x6, x7

add x4, x5, x6 IF EX MEMout
= 1

Wrong!
Should be 3

WB

ID WB

ID



Pipeline hazard

• Structure Hazard
• Caused by limited hardware resources.
• Solution: add resources (e.g., separating inst. and data mem)

• Data Hazard
• Control Hazard

46

Caused by the dependency between instructions:
The execution of i2 depends on some output of i1.
=> wouldn’t happen in sequential model, because i2 is executed
after finishing i1 and thus i2 can always see the output of i1.



Pipeline hazard

• Structure Hazard
• Caused by limited hardware resources.
• Solution: add resources (e.g., separating inst. and data mem)

• Data Hazard
• Control Hazard

47

Caused by the dependency between instructions:
The execution of i2 depends on some output of i1.
=> wouldn’t happen in sequential model, because i2 is executed
after finishing i1 and thus i2 can always see the output of i1.

i2 must wait for the finish of i1?
Can we get the output sooner and thus

doesn’t affect the execution of i2?



ID

WB

WB
x5 = 0
x6 = 1

Forwarding

48

x5 = 0, x6 = 1, x7 = 1
add x5, x6, x7 (x5 = x6 + x7)
add x4, x5, x6 (x4 = x5 + x6)
x4 should be 3

IF EX MEMadd x5, x6, x7

add x4, x5, x6 IF EX MEM

out
= 2

Forwarding
ID



Forwarding

49

x5 = 0, x6 = 1, x7 = 1
add x5, x6, x7 (x5 = x6 + x7)
add x4, x5, x6 (x4 = x5 + x6)
x4 should be 3



Forwarding

50

x5 = 0, x6 = 1, x7 = 1
add x5, x6, x7 (x5 = x6 + x7)
add x4, x5, x6 (x4 = x5 + x6)
x4 should be 3

IF EX MEMadd x5, x6, x7

add x4, x5, x6 IF EX MEMout
= 3

Correct!

ID

WB

WB

ID



Forwarding

51

• The input of some stage s2 in i2 depends on the output of some stage s1 in i1:

• E.g. i2’s input of EX stage depends on the i1’s output of EX stage

• Trying to forward i1’s output of s1 to i2’s s2.

• But this doesn’t work all the time.

• Need to delay i2’s s2 until i1 has the output.

• How? By adding bubble (nop instruction)

Sometimes i1 cannot have the

output at the time when i2

needs it (e.g., i2’s input of EX 

depends on i1’s output of MEM)



Bubble

52

x5 = 0, x6 = 1, mem[101] = 1
i1: ld x5, x6(100) (x5 = mem[x6 + 100])
i2: add x4, x5, x6 (x4 = x5 + x6)
x4 should be 2

IF ID EX MEM WBi1: ld x5, x6(100)

i2: add x4, x5, x6 IF ID EX MEM WB

input of i2’s EX stage
depends on the output of

i1’s MEM stage



Bubble

53

x5 = 0, x6 = 1, mem[101] = 1
i1: ld x5, x6(100) (x5 = mem[x6 + 100])

i2: add x4, x5, x6 (x4 = x5 + x6)

x4 should be 2

IF ID EX MEMi1: ld x5, x6(100)

i2: add x4, x5, x6 IF EX MEM

However, when i2 starts EX stage,
i1 just starts its MEM stage!

=> We do not have the correct

input yet!

input of i2’s EX stage
depends on the output of

i1’s MEM stage

ID

WB

WB



ID

WB

WB

Bubble

54

x5 = 0, x6 = 1, mem[101] = 1
i1: ld x5, x6(100) (x5 = mem[x6 + 100])
i2: add x4, x5, x6 (x4 = x5 + x6)
x4 should be 2

IF EX MEMi1: ld x5, x6(100)

i2: add x4, x5, x6 IF EX MEM

However, when i2 starts EX stage,
i1 just starts its MEM stage!

=> We do not have the correct
input yet!

input of i2’s EX stage
depends on the output of

i1’s MEM stage

We need to delay i2’s EX stage,
so that i1 can prepare the required output.

How many bubbles?

ID



ID

WB

WB

Bubble

55

x5 = 0, x6 = 1, mem[101] = 1
i1: ld x5, x6(100) (x5 = mem[x6 + 100])

i2: add x4, x5, x6 (x4 = x5 + x6)

x4 should be 2

IF EX MEMi1: ld x5, x6(100)

i2: add x4, x5, x6 IF EX MEM WB

How many bubbles?
How many cycles it needs for i1 to prepare

the output before i2 uses it.

When i2 starts EX, i1 starts MEM.
i1 just needs 1 more cycle and

then it can provide the output.

ID



x5 = 0
x6 = 1

Bubble

56

x5 = 0, x6 = 1, mem[101] = 1
i1: ld x5, x6(100) (x5 = mem[x6 + 100])
i2: add x4, x5, x6 (x4 = x5 + x6)
x4 should be 2

IF ID EX MEM WBi1: ld x5, x6(100)

i2: add x4, x5, x6 IF ID EX MEM WB

How many bubbles?
How many cycles it needs for i1 to prepare

the output before i2 uses it.

bubble IF ID EX MEM WB

out
= 1

When i2 starts EX,

i1 has just finished MEM



x5 = 0
x6 = 1

Bubble

58

x5 = 0, x6 = 1, mem[101] = 1
i1: ld x5, x6(100) (x5 = mem[x6 + 100])
i2: add x4, x5, x6 (x4 = x5 + x6)
x4 should be 2

IF ID EX MEM WBi1: ld x5, x6(100)

i2: add x4, x5, x6 IF ID EX MEM WB

How many bubbles?
How many cycles it needs for i1 to prepare

the output before i2 uses it.

bubble IF ID EX MEM WB

out
= 1



Bubble

59

x5 = 0, x6 = 1, mem[101] = 1
i1: ld x5, x6(100) (x5 = mem[x6 + 100])
i2: add x4, x5, x6 (x4 = x5 + x6)
x4 should be 2

IF EX MEMi1: ld x5, x6(100)

i2: add x4, x5, x6 IF EX MEM

How many bubbles?
How many cycles it needs for i1 to prepare

the output before i2 uses it.

bubble IF EX MEM

out
= 2

ID

ID WB

ID WB

WB



Q4.3 Instruction throughput

• How does the new 4-stage design affect the instruction throughput?
A. instruction throughput for 4-stage pipelined CPU is lower than that in the 5-

stage pipelined CPU, under ideal (no hazard) scenarios.
B. instruction throughput for 4-stage pipelined CPU is higher than that in the 5-

stage pipelined CPU, under ideal (no hazard) scenarios.
C. instruction throughput for 4-stage pipelined CPU is the same as that in the 5-

stage pipelined CPU, under ideal (no hazard) scenarios.
D. 4-stage pipelined CPU tends to have fewer hazards than 5-stage pipelined CPU.
E. 4-stage pipelined CPU tends to have more hazards than 5-stage pipelined CPU.
F. 4-stage pipelined CPU has the same amount of hazards as 5-stage pipelined 

CPU.

throughput is still 1/200ps

62



Q4.3 Instruction throughput

63

• More stages, tend to have more hazards
• E.g. sequential model: 1 stage, no hazards

• Why?
• Suppose i2 depends on the output of i1
• Intuitively, with more stages, there are more cases that i1 is still in process
when i2 needs the input, and causes a hazard.



Q4.3 Instruction throughput

64

i1: add x5, x6, x7
Nop
i2: add x4, x5, x6

IF ID EX MEM WBi1: add x5, x6, x7

nop IF ID EX MEM

IF ID EX MEMi2: add x4, x5, x6

When i2 tries
to read x5

i1 hasn’t written
it back

=> hazard!

WB



Q4.3 Instruction throughput

65

i1: add x5, x6, x7
Nop
i2: add x4, x5, x6

IF ID EX WBi1: add x5, x6, x7

nop IF EX WB

IF ID EXi2: add x4, x5, x6

When i2 tries
to read x5

i1 has just
written it back
=> No hazard

ID

ID



Control hazard

66

assume x5 = 0 x6 = 0
beq x5, x6, 100
add x1, x2, x3
…

Should jump to here:
add x7, x8, x9
How many bubbles?
Note: jump
instruction can decide the
address of the next
instruction in MEM stage



Control hazard

67

assume x5 = 0 x6 = 0
i1: beq x5, x6, 100
add x1, x2, x3
…

Should jump to here:
i2: add x7, x8, x9
How many bubbles?

IF ID EXi1: beq x5, x6, 100 ID

How many bubbles?
How many cycles it needs

for i1 to prepare the output
before next instruction uses it.

i2: add x7, x8, x9 IF ID EXID

Q1: what (the output of which stage of i1) 
does i2 need to correctly execute?

Q2: How many cycles does i1
need to finish that stage before

i2 needs it?

MEM WB

MEM WB



Control hazard

68

assume x5 = 0 x6 = 0
i1: beq x5, x6, 100
add x1, x2, x3
…

Should jump to here:
i2: add x7, x8, x9
How many bubbles?

IF ID EXi1: beq x5, x6, 100 ID

How many bubbles?
How many cycles it needs

for i1 to prepare the output
before next instruction uses it.

i2: add x7, x8, x9 IF ID EXID

Q1: what (the output of which stage of i1) 
does i2 need to correctly execute?

i2 needs the instruction address
=> decided by MEM stage in i1

MEM WB

MEM WB



MEM

Control hazard

69

assume x5 = 0 x6 = 0
i1: beq x5, x6, 100
add x1, x2, x3
…

Should jump to here:
i2: add x7, x8, x9
How many bubbles?

IF ID EXi1: beq x5, x6, 100 ID

How many bubbles?
How many cycles it needs

for i1 to prepare the output
before next instruction uses it.

i2: add x7, x8, x9 IF ID EXID

i2 needs the instruction address
=> decided by MEM stage in i1

Q2: How many cycles does i1
need to finish that stage before

i2 needs it?

i1 should finish MEM before i2 starts IF
i1 starts MEM at cycle k, i2 starts IF at cycle k+1

WB

MEM WB



Control hazard

70

assume x5 = 0 x6 = 0
i1: beq x5, x6, 100
add x1, x2, x3
…

Should jump to here:
i2: add x7, x8, x9
How many bubbles?

IF ID EXi1: beq x5, x6, 100 ID

How many bubbles?
How many cycles it needs

for i1 to prepare the output
before next instruction uses it.

i2: add x7, x8, x9 IF ID EXID

i2 needs the instruction address
=> decided by MEM stage in i1

Q2: How many cycles does i1
need to finish that stage before

i2 needs it?

MEM WB

MEM WB

Currently, i1 starts MEM at cycle k, i2 starts
IF at cycle ?



Control hazard

71

assume x5 = 0 x6 = 0
i1: beq x5, x6, 100
add x1, x2, x3
…

Should jump to here:
i2: add x7, x8, x9
How many bubbles?

IF ID EXi1: beq x5, x6, 100 ID

How many bubbles?
How many cycles it needs

for i1 to prepare the output
before next instruction uses it.

i2: add x7, x8, x9 IF ID EXID

i2 needs the instruction address
=> decided by MEM stage in i1

Q2: How many cycles does i1
need to finish that stage before

i2 needs it?

kk - 1

MEM WB

MEM WB

k - 2



Control hazard

72

assume x5 = 0 x6 = 0
i1: beq x5, x6, 100
add x1, x2, x3
…

Should jump to here:
i2: add x7, x8, x9
How many bubbles?

IF ID EXi1: beq x5, x6, 100 ID

How many bubbles?
How many cycles it needs

for i1 to prepare the output
before next instruction uses it.

i2: add x7, x8, x9 IF ID EXID

i2 needs the instruction address
=> decided by MEM stage in i1

Q2: How many cycles does i1
need to finish that stage before

i2 needs it?

Delay i2 for 3 cycles!
=> Insert 3 bubbles

kk - 1k - 2

MEM WB

MEM

i1 should finish MEM before i2 starts IF
i1 starts MEM at cycle k, i2 starts IF at cycle k+1

WB



MEM

Control hazard

73

i1: beq x5, x6, 100

How many bubbles?
How many cycles it needs

for i1 to prepare the output
before next instruction uses it.

i2: add x7, x8, x9 IF

Q2: How many cycles does i1
need to finish that stage before

i2 needs it?

bubble

bubble

When i2
starts IF

i1 has just
finished

MEM

IF EXID WB

IF EXID MEM

IF EXID

IFbubble ID



MEM

Control hazard

74

i1: beq x5, x6, 100

How many bubbles?
How many cycles it needs

for i1 to prepare the output
before next instruction uses it.

i2: add x7, x8, x9 IF

Q2: How many cycles does i1
need to finish that stage before

i2 needs it?

bubble

bubble

When i2
starts IF

i1 has just
finished

MEM

IF EXID WB

IF EXID MEM

IF EXID

IFbubble ID



Common question for lab5

• Incomplete problem: Some circuits will be tested together
• try to finish all circuits in one exercise, and check again

• When implementing
• Don't change the contents above the dash line, and
• use Tunnels (not pins) as inputs and outputs

• Building sub-circuits/sub-components and use Tunnels will help a lot
• especially for complex implementation, i.e. bonus exercise: Logical Shift Right

80



Congrats to all 

• Great job!
• Thanks for attending and supporting!
• Good luck to all your final works~

85


