CSO-Recitation 15
CSCI-UA 0201-007

R15: Assessment 13 & Mock Exam

Today’s Topics

* Mock Exam

e Assessment 13
* Review pipelined CPU

Mock Exam

1 Basic C and X86 64 machine
instructions (28 points)

All questions in this section assume the x86-64 platform (Little Endian).

1-A

Given a binary sequence (00000110)2, what is its decimal value?
1. 6

2. 5

3. 8

4. 10

5. None of the above

1-B

Given a signed char —20, what is its binary representation?

1. (1001 0100)2 A useful trick to do negation: 20 = (0001 0100)2
(1110 1011)2 (0001 0100)2 flip=> (1110 1011)2
(1110 1100)2 Step-2:add 1

(0001 0100)2 (1110 1011)2 + 1 = (1110 1100)2
None of the above

Gl b B

1-C

Suppose %eax contains signed int 255. After successfully executing
movl %eax, (%ecx), what is the byte value stored at the address given
by %ecx?

1. Oxff

2. 0x00

3. 0xf0 Hecx
4. 0OxOf j
5. None of the above

1-C

Suppose %eax contains signed int 255. After successfully executing
movl %eax, (%ecx), what is the byte value stored at the address given

by %ecx? All questions in this section assume the x86-64 platform (Little Endian).
1. Oxff
2. 0x00
3. 0xf0 soecx
4. OxOf j
5. None of the above m““
Lower Higher
address address

1-C

Suppose %eax contains signed int 255. After successfully executing
movl %eax, (%ecx), what is the byte value stored at the address given

by %ecx?

1. Oxff

2. 0x00

3. 0xfO

4. OxOf

5. None of the above

All questions in this section assume the x86-64 platform (Little Endian).

%ecx Q: what is the answer if the machine is Big Endian?

|

() oo | o0 | 00

Lower Higher
address address

1-D

Consider the following code snippet,

char *[4] = {"C", "programming", "is", "hard"};

char xxp;

p = names,;
P p + 2;

After executing the above, what is the value of p[1][1]?

Q1: what is the size of name[0]?

int main()

{

char xnames[4] = {"C", "programming", "is", "hard"};

printf("the size of the first element is: %d\n", sizeof(names([0]));
return 0;

10

1-D

Consider the following code snippet,

char xpnames|4] = {"C", "programming", "is", "hard"};

char *x*p;

p = names; addr 1

P =P + 2 \
Af_vhat is the value of p[1][1]?
names

0 8 16 24
11

1-D

Consider the following code snippet,

char x*names[4] = {"C", "programming", "is", "hard"};

char xxp;

addr 1

p=p+2;

After executing the above, what is the value of p[1][1]?

p, names

0) 8 16 24

12

1-D

Consider the following code snippet,

nhardn};

addr 1

|

char x*names[4] = {"C", "programming", "is",
char xxp;
P = names;

After executing the above, what is the value of p[1][1]?

p, names

0) 8 16 24

13

1-D

Consider the following code snippet,

nhardn};

char x*names[4] = {"C", "programming", "is",
char xxp;
P = names;

After executing the above, what is the value of p[1][1]?

p: a pointer to
Pointer arithmetic: value of (p+2) =valueof p +2 *
char * type: to a char => 8 bytes

value of (p+2) = value of p + 16

14

1-D

Consider the following code snippet,

char xnames[4] = {"C", "programming", "is", "hard"};

char *xp;
p = names; addr 1

\
After executing the above, what is the value of

names p

l = N
0 8 16 211

p+1

15

1-D

Consider the following code snippet,

char xnames[4] = {"C", "programming", "is", "hard"};
char *xp;
p = names; addr 1
\
After executing the above, what is the value of
addr 4

laddr4+1

|
ol o

names p

|

I T N N
0 8 16 211

p+1

16

1-D

Consider the following code snippet,

char x*names[4] = {"C", "programming", "is", "hard"};

char xxp;

P = names;
p=p+2;

After executing the above, what is the value of p[1][1]?

17

1-E

Consider the following code snippet,

int al[3]
short =Db;

b = (short «)a;
b++;

After executing the above, what is the value of *b?

18

1-E

Consider the following code snippet,

int al[3]
short =Db;

b = (short =*)a;
b++;

After executing the above, what is the value of *b?

d

|

o1 | 00 | 00 00| 02 00 001 00|03 | 00 00] 00
0 4 8

19

1-E

Consider the following code snippet,

int al[3]
short =Db;

b = (short «)a;
b++;

After executing the above, what is the value of *b?

b, a

|

01| 00| 0000 02 00 001 00|03 | 00 00] 00
0 4 8

20

1-E

Consider the following code snippet,

After executing the above, what is the value of *b?

b: a pointer to
Pointer arithmetic: value of (b+1) =valueof b +1 *

short type: 2 bytes
value of (b+1) = value of b + 2

21

1-E

Consider the following code snippet,

After executing the above, what is the value of *b?

3 b

I

Lot [o0 | 00 To0)] o2 | 0ol o0l 00 03 | o0l o0l o0
8

0 4

22

1-E

Consider the following code snippet,

23

1-E

Consider the following code snippet,

int al[3]
short =Db;

b = (short «)a;
b++;

After executing the above, what is the value of *b?

24

1-F

Which following expressions compute the remainder of x modulo 64 (x

is of type unsigned int)?

(X%@ X=i*64+j,0<=j<64

X: 32bits, 64 = 26
2. x/64

3. x>>6

\ |
& 0x0000003 ! —

(x << 26) >> 26 26 bits

6. None of the above

$
'

000000.....

25

1-G

Which of the follo W.I.t

-»

Every call to malloc results in the memory al
(e.g. sbrk)tor

.. malloc returns emory allocator does not

have any free

When using the implicit-list design, malloc tends to traverse more
chunks than when using the explicit-list design.

4. None of the above.

26

2 Memory hierarchy
(25 points + bonus 10 points)

27

2-A

What is the latency to access L1 cache and main memory, respectively?
Do not forget to write down the time unit. (We consider the answer

correct if it’s within a factor of 10)

28

2-B

The rest of the questions assume a cache whose total size is 1KB and
each cache line/block is 64-byte.

How many cacheline/blocks does the cache contain?

29

2-C

The rest of the question
each cache line/block is

tal size is 1KB and

Suppose the cache i@rect map@ache. Given a 32-bit address
Oxab345f78, which cacheline/block contains the cached data for this
address?

of bits = log2(64) =6

30

2-C

The rest of the question
each cache line/block is

tal size is 1KB and

Suppose the cache i@rect map@ache. Given a 32-bit address
Oxab345f78, which cacheline/block contains the cached data for this
address?

Tag Byte offset

of bits = log2(16) =4 # of bits = log2(64) =6
31

2-C

The rest of the question
each cache line/block is

tal size is 1KB and

Suppose the cache i@rect map@ache. Given a 32-bit address

Oxab345f78, which cacheline/block contains the cached data for this
a P

of bits=32-4-6=22 # of bits = log2(16) =4 # of bits = log2(64) =6
32

2-C

The rest of the questions assume a cache whose total size is 1KB and
each cache line/block is 64-byte.

Suppose the cache is a direct mapped cache. Given a 32-bit address

Oxab345f78, which cacheline/block contains the cached data for this
address?

Oxab345f78:

of bits=32-4-6=22 # of bits = log2(16) =4 # of bits = log2(64) =6
33

2-C

Oxab345f78:

T 0 o1 | Caoe)

Sets/Cachelines: (111000)2 = 56
57t bytes in data

0)
1
2
15

64 bytes of data, index 0 - 63
can be represented by 6 bits (000000 —111111)
=> The size of byte offset part

16 sets, index O - 15
can be represented by 4 bits (0000 —1111)
=> The size of index part

34

2-D
How manygacheline—a@memory addresses can

<_be mapped to the same cache location-as Oxab345f78
(assuming 32-bit address space)?

Oxab345f78:

O 1201 Byte offset

Addresse

of bits=32-4-6=22 # of bits = log2(16) =4 # of bits = log2(64) =6

35

2-D: exercise

How manycacheline-alighed>memory addresses can
e ——

<_be mapped to the same cache location-as Oxab345f78
(assuming 32-bit address space)?

Oxab345f78:

e 1101

of bits=32-4-6=22 # of bits = log2(16) =4 # of bits = log2(64) =6

36

2-E

If your answer in D. is bigger than 1, how can we determine which of
the memory addresses is actually stored at a given cache location?

37

2-F

Suppose the cache is a 2-way associative cache, i.e. the cache is
organized into sets each of which contains 2 cachelines. How many sets

does the cache contain?

38

2-G

For the 2-way assocative cache, given a 32-bit address Oxab345f78,
which set may contain the cached data for this address?

Oxab345f78:
of bits = # of bits = # of bits =
total number of bits log2(# of sets) log2(# of bytes per cacheline)
- index — byte offset =log2(8) =3 = log2(64) =6
=32-3-6=23

39

2-H

For the 2-way associactive cache, how many@eline-aligne memory
<addresses can be mapped to the same=set as Oxab345f78

Oxab345f78:

O 101 Byte offset

Addresse

Tag 101 000000

of bits=32-3-6=23 # of bits = log2(8) =3 # of bits = log2(64) =6

40

16
rows

2-1 (bonus)

Suppose ROWS=16, COLS=16. Out of ROWS*COLS total 8-byte memory
accesses, how many of them result in cache miss (assuming the cache
is direct-mapped and it’'s empty before the start of the loop)?

Note: Here we suppose the start address of this array is cacheline-aligned.

, 16
columns

gE==2
EECS U
-

=T T
T

=---= 41

16
rows

2-1 (bonus)

Suppose ROWS=16, COLS=16. Out of ROWS*COLS total 8-byte memory
accesses, how many of them result in cache miss (assuming the cache
is direct-mapped and it’'s empty before the start of the loop)?

Note: Here we suppose the start address of this array is cacheline-aligned.

) cqumns
=

=‘--=
|
=‘--=
|
=4--=
|
=---= Access sequence 42

16
rows

2-1 (bonus)

Suppose ROWS=16, COLS=16. Out of ROWS*COLS total 8-byte memory
accesses, how many of them result in cache miss (assuming the cache
is direct-mapped and it’'s empty before the start of the loop)?

Note: Here we suppose the start address of this array is cacheline-aligned.

, 16
columns

E r=al
T
==

|
= = Access sequence
I d 43

16
rows

2-1 (bonus)

Suppose ROWS=16, COLS=16. Out of ROWS*COLS total 8-byte memory
accesses, how many of them result in cache miss (assuming the cache
is direct-mapped and it’'s empty before the start of the loop)?

N Ciigiianiiiiiaaaaagsaaggtart address of this array is cacheline-aligned.
64 bytes =8 *
sizeof(long) -

=‘--=
|

16
columns

—
T
=‘--=
[
———— [FUSEEE ”

16
rows

2-1 (bonus)

Suppose ROWS=16, COLS=16. Out of ROWS*COLS total 8-byte memory
accesses, how many of them result in cache miss (assuming the cache
is direct-mapped and it’'s empty before the start of the loop)?

Note: Here we suppose the start address of this array is cacheline-aligned.

. 16

columns

=
I

=

|

=
R

="--=
} I I

Access sequence
G 45

16
rows

2-) (bonus)

Suppose ROWS=16, COLS=16. Out of ROWS*COLS total 8-byte memory
accesses, how many of them result in cache miss (assuming the cache
is direct-mapped and it’'s empty before the start of the loop)?

Note: Here we suppose the start address of this array is cacheline-aligned.

, 16
columns

/11

'l

Vi
i
/I

Access sequence
| "" G 46

16
rows

2-) (bonus)

Suppose ROWS=16, COLS=16. Out of ROWS*COLS total 8-byte memory
accesses, how many of them result in cache miss (assuming the cache
is direct-mapped and it’'s empty before the start of the loop)?

Note: Here we suppose the start address of this array is cacheline-aligned.

, 16
columns

Access sequence
G 47

16
rows

¢ ‘ ¢ ‘ ' "“ Access sequence
A

2-) (bonus)

Suppose ROWS=16, COLS=16. Out of ROWS*COLS total 8-byte memory
accesses, how many of them result in cache miss (assuming the cache
is direct-mapped and it’'s empty before the start of the loop)?

Note: Here we suppose the start address of this array is cacheline-aligned.

. 16

| ‘A ‘ﬁ n" columns
Vvl
i
i

_——

i
Y
i

48

16
rows

-J (bonus)

Suppose ROWS=16, COLS=16. Out of ROWS*COLS total 8-byte memory
accesses, how many of them result in cache miss (assuming the cache
is direct-mapped and it’'s empty before the start of the loop)?

Note: Here we suppose the start address of this array is cacheline-aligned.

, 16
columns

Access sequence
G 49

cacheline size

—
S—
—

Direct mapped: one cacheline per set
number of sets/cachelines in the cache: 16 (Q2-B)
* Index: 0000-1111 (0 - 15)

 Each row =16 * sizeof(long) = 2 cacheline size

16 rows

53

cacheline size

—
S—
—

Direct mapped: one cacheline per set
number of sets/cachelines in the cache: 16 (Q2-B)
* Index: 0000-1111 (0 - 15)

 Each row =16 * sizeof(long) = 2 cacheline size

16 rows Address: 0

Tag (22 bits) 0000 Byte offset (6 bits)

54

cacheline size

— Set: O

Direct mapped: one cacheline per set
number of sets/cachelines in the cache: 16 (Q2-B)
* Index: 0000-1111 (0 - 15)

 Each row =16 * sizeof(long) = 2 cacheline size

16 rows Address: 64 =1 * 276

Tag (22 bits) 0001 Byte offset (6 bits)

55

cacheline size

—
S—
—

Set: O

* Direct mapped: one cacheline per set
» # number of sets/cachelines in the cache: 16 (Q2-B)
* Index: 0000- 1111 (0- 15)

Each row = 16 * sizeof(long) = 2 cacheline size

16 rows Address: 64 =2 * 216

Tag (22 bits) 0010 Byte offset (6 bits)

56

cacheline size

—
S—
—

— Set: O

Set: 2
Set: 4
Set: 6

* Direct mapped: one cacheline per set
» # number of sets/cachelines in the cache: 16 (Q2-B)

* Index: 0000- 1111 (0- 15)
Set: 8

Set: 10
Set: 12
Set: 14

 Each row =16 * sizeof(long) = 2 cacheline size

16 rows

Index (4 bits) Byte offset (6 bits)

e
ML &

57

cacheline size

—
S—
—

|

Set: O
Set: 2

Set: 4 * Direct mapped: one cacheline per set
Set: 6 * # number of sets/cachelines in the cache: 16 (Q2-B)
* Index: 0000- 1111 (0- 15)

Set: 8

| seno
| set2
| send
| set6
| sets
F

 Each row =16 * sizeof(long) = 2 cacheline size

—t
[EEY
w

16 rows Address: 64 = 16 * 2176

Tag (22 bits) 0000 Byte offset (6 bits)

L

A

58

[

cacheline size

| |
-
* Direct mapped: one cacheline per set
« # number of sets/cachelines in the cache: 16 (Q2-B)
* Index: 0000- 1111 (0- 15)
 Each row =16 * sizeof(long) = 2 cacheline size
16 rows
-

Index (4 bits) Byte offset (6 bits)

59

cacheline size

* Direct mapped: one cacheline per set
» # number of sets/cachelines in the cache: 16 (Q2-B)
* Index: 0000- 1111 (0- 15)

 Each row =16 * sizeof(long) = 2 cacheline size

16 rows

60

cacheline size

— Set: 0

Set: 1
Set: 3
Set: 5
Set: 7

II

* Direct mapped: one cacheline per set
» # number of sets/cachelines in the cache: 16 (Q2-B)
* Index: 0000- 1111 (0- 15)

 Each row =16 * sizeof(long) = 2 cacheline size

16 rows

61

cacheline size

* Direct mapped: one cacheline per set
» # number of sets/cachelines in the cache: 16 (Q2-B)
* Index: 0000- 1111 (0- 15)

 Each row =16 * sizeof(long) = 2 cacheline size

16 rows

62

cacheline size

* Direct mapped: one cacheline per set
* # number of sets/cachelines in the cache: 16 (Q2-B)
* Index: 0000- 1111 (0- 15)

 Each row =16 * sizeof(long) = 2 cacheline size

16 rows

63

16 rows

cacheline size

* Direct mapped: one cacheline per set
* # number of sets/cachelines in the cache: 16 (Q2-B)
* Index: 0000- 1111 (0- 15)

 Each row =16 * sizeof(long) = 2 cacheline size

Mapped to the same set!
And only one cacheline per set!
=> replacement

64

16 rows

cacheline size

* Direct mapped: one cacheline per set
* # number of sets/cachelines in the cache: 16 (Q2-B)
* Index: 0000- 1111 (0- 15)

 Each row =16 * sizeof(long) = 2 cacheline size

Mapped to the same set!
And only one cacheline per set!
=> replacement

65

cacheline size

All of them are
evicted from cache.

* Direct mapped: one cacheline per set
* # number of sets/cachelines in the cache: 16 (Q2-B)
* Index: 0000- 1111 (0- 15)

 Each row =16 * sizeof(long) = 2 cacheline size

16 rows

66

cacheline size

* Direct mapped: one cacheline per set
* # number of sets/cachelines in the cache: 16 (Q2-B)
* Index: 0000- 1111 (0- 15)

 Each row =16 * sizeof(long) = 2 cacheline size

16 rows

67

cacheline size

A
| |

* Direct mapped: one cacheline per set
* # number of sets/cachelines in the cache: 16 (Q2-B)
* Index: 0000- 1111 (0- 15)

 Each row =16 * sizeof(long) = 2 cacheline size

16 rows

68

FOWS

2-) (bonus) exercisel

Suppose ROWS=8, COLS=32. Out of ROWS*COLS total 8-byte memory
accesses, how many of them result in cache miss (assuming the cache
is direct-mapped and it’'s empty before the start of the loop)?

Note: Here we suppose the start address of this array is cacheline-aligned.

n
[/
s
ik

, o 32
columns

"“" Access sequence

69

FOWS

2-J (bonus) exercise2

Suppose ROWS=8, COLS=16. Out of ROWS*COLS total 8-byte memory
accesses, how many of them result in cache miss (assuming the cache
is direct-mapped and it’'s empty before the start of the loop)?

Note: Here we suppose the start address of this array is cacheline-aligned.

n
[/
s
ik

, 16
columns

"“" Access sequence

70

3 Logic design (25 points)

72

3-A

What is the boolean expression that corresponds to what the following
logic circuit outputs? (Please write the expression with the most direct
correspondence to this circuit without simplification.)

73

3-B

Please simplify the boolean expression (A+B)-(A+B) according to the
boolean logic laws in Appendix 6. Write down the detailed steps where
each step applies only one law and name that law

74

Q2 Simplify boolean expression

* Simplify boolean expression (A+B) (4 + B).
* You may write “*" for -, and write “barA’ for A (or ‘barB’ or B)
e (A+B)*(barA+barB)

° =(A+B)*barA + (A+B)*barB Distribution law
e =parA*A + barA*B + barB*A + barB*B pistribution law
* =0+barA*B+barB*A+0 Inverse law

o — Basic law

3-C

* If we are to use a single logic gate to implement the simplified
expression in B. Which gate to use?

1. AND

2. OR

3. NOR

4. NAND

5. XOR

6. None of the above

76

3-Question C. and D.

* Question C. and D. ask you to implement a combinatorial circuit to
compute a 3-input parity function. A parity function takes multiple 1-
bit input signals and computes a 1-bit parity bit as the output. The
parity bit is the sum of all input signals modulo 2. For example, if the
3 input signals are 110, the parity output is (1+1+0)%2 = 0. If the 3
input signals are 111, the parity output is (1+1+1)%2 = 1.

77

3-C

* Please write the truth table for the 3-input parity function.

0
0
0
0
1
1
1
1

- ~r O O +r» » O O
- O —r O +» O +» O
R O O P O +—» = O

78

3-D

* Please draw the combinatorial circuit that implements the above
Pd rity function. Follow the rule of “sum of products”

Products

barA*barB*C
barA*B*barC

A*barB*barC

A*B*C

0
0
0
0
1
1
1
1

- ~r O O » » O O
- O B O B O = O
R O O P O +» = O

79

4. CPU design

* Figure 1 shows a basic single-cycle CPU design for RISC-V. The design
handles 3 types of instructions: arithmetic instructions involving two
source registers and one destination register, memory load
instructions and store instructions. Note that the design does not
implement conditional branches. Suppose the major logic blocks in
Figure 1 have the following latencies (If a logic block’s latency is not
specified, it is small enough to be ignored.)

31

Read from instruction memory
Read from regfile

" Write to regfile
4. CPU design S

Read/write to data memory

RegWrite

instruction[1 9:15L read-regsiter'-1 MemWrite

address i MemtoReg

instruction[24:20] | read-register-2 read- : |

Instruction —> Regfile 9ata-1

; ; e address
Memory |nstruct|on[11.7]_> write-register read- > > read-
data-2 ALU Data data

instruction > write-data
Memory 1
write-data

_’.O
S
S

Figure 1: Basic RISC-V CPU design

4-A

* What is the minimum latency to execute each of the following
instructions in the single-cycle design:

Instruction Instruction meaning | Latency

sd x1, 16(x2) | Memory[x2+16] = x1

1d x1, 16(x2) | x1 = Memory[x2+16]

83

Read from instruction memory
Read from regfile

add x1, x2, 53 | x1=x2+x3 [T R
add x1, x2, x3 | x1 =x2+x3 ALU

Read/write to data memory

RegWrite
2 |

instruction[19:15 ")
L read-regsiter-1 MemWrite

address 3 read- K MemtoReg

instruction[24:20] | read-register-2
.::::;I> : = :|—J:data—1 x1 5 '|
|nstruct|on[11.7]:) write-register read- ~ address read-_’.
instruction 5~ write-data data-2 Data data
Memory
x1

write-data

ALUOp

Figure 1: Basic RISC-V CPU design

4-A

sd x1, 16(x2) | Memory[x2+16] = x1 ALU

address

-

instruction

Read from instruction memory

Read from regfile

Write to regfile

Read/write to data memory

RegWrite
2 :
instruction[19:15] ! MemWrite

»>| read-regsiter-1

MemtoReg

|nstruct|<;lh[24 20] read-register-2, read-
I
= address
instruction[11: 7]_’_ write-register - Og
P write-data data-)
1 ><
16 : > write-data

Figure 1: Basic RISC-V CPU design

Read from instruction memory
Read from regfile

4_ A Write to regfile
Id x1, 16(x2) | x1 = Memory[x2+16] ALU

Read/write to data memory

RegWrite
2 |

instruction[19:15] y
»>| read-regsiter-1

MemWrite

MemtoReg

address

instruction[24:20] | read-register-2 c;ead-1 x2+16 T
— ata- ‘

1
ﬁ instructig)'n[11:7]:) Writ%>] = address a d_MeE\['X2+16]
instruction wm‘f%2+16] d Iﬁd

Imm 1 6 write-data

| Gen _‘

emo

Figure 1: Basic RISC-V CPU design

4-B

What is fastest clock cycle time that can be used for the single-cycle
CPU design?

 The time sufficient for all instructions to finish

* =time of slowest instruction

87

Read from instruction memory | 400ps
Read from regfile

4_ C Write to regfile

Read/write to data memory

Suppose we change the CPU in Figure 1 into 5-stage pipelined design:
IF(instruction fetch), ID(instruction decode and register read),
EX(execute operation or calculate address), MEM(memory access),
WB(write back to regfile). The five stages of the pipeline are marked as
the large grey rectangles in Figure 1. What is the fastest clock cycle
time that can be used for the 5-stage design?

pipeline clock cycle=max_stage time

388

Question E. and F. assume the following two instruction sequence:

4_E 1d x1, 16(x2) // i.e. x1 = Memory[x2+16]
add x5, x1, x4 // i.e. x5 = x1+x4

Suppose there is no forwarding between pipeline stages, how many
bubbles (aka nop) must be inserted between the two instructions to
ensure correctness?

o
o

bubble

ﬁ

i2: add x5, x1, x4

Question E. and F. assume the following two instruction sequence:

4_F 1d x1, 16(x2) // i.e. x1 = Memory[x2+16]
add x5, x1, x4 // i.e. x5 x1+x4

Suppose the result of MEM stage is forwarded to the EX stage, how
many bubbles (aka nop) must be inserted between the two instructions

to ensure correctness?

bubble

i2: add x5, x1, x4

90

Assessment 13

91

Q1 5-stage pipeline

* This question assumes the 5-stage pipelined design of RISC-V (slide 21
of), also
reproduced here:

https://nyu-cso.github.io/notes/arch-cpu-pipeline.pdf

Q1.1

* Consider the following sequence of RISC-V instructions.
add x2, x1, x3 //x2=x1+x3
and x5, x1, x3 //x5 = x1 & x3
or x10, x11, x9 //x10 =x11 | x9
add x14, x1, x1 //x14 = x1+x1
add x15, x11, x12 //x15 = x11+x12

* How many clock cycles are needed to execute the above instruction
sequence?

93

Q1.1

* For ninstructions with no hazards, #cycles = n+#stages-1 = n+4

cycle 1 cycle 2 cycle 3 cycle 4 cycle 5 cycle 6 cycle 7

L B
B B
Q1.1 has no hazards; it has 5(n) instructions, so answer is 5+4=9

* More generally (considering hazards), #cycles = n+#stages-1+#bubbles

94

Q1.2

» Consider a different sequence of instructions:

* How many clock cycles are needed to execute the above instruction
sequence? We assume the pipeline does not perform forwarding but
only relies on stalls (aka inserting bubbles) to handie hazard. We also
assume that one can read the data written to the register in the same
cycle.

add x2, x1, x3 //x2=x1+x3

and x5, x2, x3 //x5 =x2 & x3

or x10, x2, x9 //x10 =x2 | x9
add x14, x2, x2 //x14 = x2+x2
add x15, x2, x12 //x15 = x2+x12

95

add x2, x1, x3 //x2=x1+x3
and x5, x2, x3 //x5 xx2 & x3

Q:I_ . 2 or x10, x2, x9 //x10 =x2 | x9

add x14, x2, x2 //x14 = x2+x2
add x15, x2, x12 //x15 = x2+x12

* Answer= n+#stages-1+#bubbles

* Are there any hazards?

 How many bubbles introduced by the hazard?

il: add x2, x1, x3 n
i2: and x5, x2, x3

i3: or x10, x2, x9

add x2, x1, x3 //x2=x1+x3

and x5, x2, x3 //x5 xx2 & x3
Ql . 2 or x10, x2, x9 //x10 =x2 | x9

add x14, x2, x2 //x14 = x2+x2

add x15, x2, x12 //x15 = x2+x12

Answer= n+#stages-1+#bubbles

Are there any hazards?

How many bubbles introduced by the hazard?

° 2 .
,1
No hazards afterwards

answer=9+2=11

ld x2, 100(x1) //x2=Memory[100+x1]
and x5, x2, x3 //x5 x%2 & x3

Ql . 3 or x10, x2, x9 //x10 =x2 | x9

add x14, x2, x2 //x14 = x2+x2
add x15, x2, x12 //x15 = x2+x12

* Consider yet another sequence of instructions:

* How many clock cycles are needed to execute the above instruction
sequence? Like before, we assume the pipeline does not perform
forwarding but only relies on stalls (aka inserting bubbles) to handle
hazard. We also assume that one can read the data written to the
register in the same cycle.

98

add x2, x1, x3 //x2=x1+x3
and x5, x2, x3 //x5 xx2 & x3

Ql . 4 or x10, x2, x9 //x10 =x2 | x9

add x14, x2, x2 //x14 = x2+x2
add x15, x2, x12 //x15 = x2+x12

e Suppose the CPU performs forwarding, as done on slide 34 of

* How many clock cycles are needed to execute the instruction
sequence in Q1.27 Forwarding Paths

ID/EX MEM/WB

EX/MEM RegisterRd
-

MEM/WB RegisterRd

https://nyu-cso.github.io/notes/arch-cpu-pipeline.pdf

add x2, x1, x3 //x2=x1+x3
and x5, x2, x3 //x5 xx2 & x3

Ql . 4 or x10, x2, x9 //x10 =x2 | x9

add x14, x2, x2 //x14 = x2+x2
add x15, x2, x12 //x15 = x2+x12

 Answer= n+ffstages-1+#bubbles

i1

Forwarding Paths E

MEM/WB

No bubbles
Answer=n+4=9

100

ld x2, 100(x1) //x2=Memory[100+x1]
and x5, x2, x3 //x5 x%2 & x3

Q:I_ . 5 or x10, x2, x9 //x10 =x2 | x9

add x14, x2, x2 //x14 = x2+x2
add x15, x2, x12 //x15 = x2+x12

e Suppose the CPU performs forwarding, how many clock cycles are
needed to execute the instruction sequence in Q1.3?

* Answer= n+#istages-1+#bubbles

ool R

i2: and x5, x2, x3 -

101

ld x2, 100(x1) //x2=Memory[100+x1]
and x5, x2, x3 //x5 x%2 & x3

Ql . 5 or x10, x2, x9 //x10 =x2 | x9

add x14, x2, x2 //x14 = x2+x2
add x15, x2, x12 //x15 = x2+x12

e Suppose the CPU performs forwarding, how many clock cycles are
needed to execute the instruction sequence in Q1.3?

 Answer= n+ffstages-1+#bubbles

i1: 1d x2, 100(x1) n
bubble n

i2: and x5, x2, x3

_X’

1 bubble
Answer=n+4+1=10 i3: or x10, X2, x9

102

Q2 4-stage pipeline

* Ben Bitdiddle decides to make a 4-stage pipelined CPU by merging the
IF and ID stage of the 5-stage pipeline into a combined IFID stage, as
shown below. — i |

add x2, x1, x3 //x2=x1+x3
QZ 1 and x5, x1, x3 //x5 = x1 & x3
. or x10, x11, x9 //x10 =x11 | x9
add x14, x1, x1 //x14 = x1+x1
add x15, x11, x12 //x15 = x11+x12

* For the instruction sequence in Q1.1, how many clock cycles are
needed to execute them all? (We assume Ben sets the clock
frequency appropriately so that each stage can be completed in one
clock cycle)

e #Hcycles = n+#stages-1+#bubbles

104

Q2.2

Assuming in the original 5-staie design, each stage takes exactly the same amount

of time to execute. Which of t

e following statements are true for Ben's 4-stage

pipeline design?

A.

B.

Under the new 4-stage design, the clock period can remain the same as that in
the 5-stage design. . .
clock period=max_stage_time

Under the new 4-stage design, the clock period is twice as long as that in the 5-
stage design

I e = - s

~

It takes longer time to execute the instruction sequence of Q1.1 under the 4-
stage design than the original 5-stage design.

It takes shorter time to execute the instruction sequence ¢
stage design than the original 5-stage design.

It takes the same amount of time to execute the instructio
under the 4-stage design than the original 5-stage design.

105

Q3 Another 4-stage design

* Ben Bitdiddle tries another a 4-stage pipelined design. This time, he
combines EX and MEM stage into a single stage EXMEM, as shown
below.

* To make this new design possible, Ben modifies the RISC-V instruction
set so that the load and store instructions no longer take an offset.
Rather, the member address must be calculated explicitly through an
arithmetic instruction and stored in some register before load and
store.

106

Address

Instruction
memory

Instruction

Read
register 1

Read
data 1

Read

register 2
Registers Read

data 2

Q3.1

* In the instruction sequence of Q1.3, the first instruction is Id x2,
100(x1), which is not supported by Ben's new ISA. Please write an
equivalent RISC-V instruction sequence that's supported by Ben's ISA
while achieving the same desired effect.

108

addi x1, x1, 100
ld x2, x1
and x5, x2, x3 //x5 =x2 & x3

Q3 . 2 or x10, x2, x9 //x10 =x2 | x9

add x14, x2, x2 //x14 = x2+x2
add x15, x2, x12 //x15 = x2+x12

* How many clock cycles are needed to execute the instruction
sequence of Q1.3 under Ben's new 4-stage CPU design?

* We assume no forwarding.

* We assume the instruction Id x2, 100(x1) is substituted with your
answer in Q3.1.

109

addi x1, x1, 100

ld x2, x

and)é’,‘xz, x3 //x5 =x2 & x3
Q3 . 2 or x10, x2, x9 //x10 =x2 | x9

add x14, x2, x2 //x14 = x2+x2

add x15, x2, x12 //x15 = x2+x12

* Answer= n+#stages-1+#bubbles

* Are there any hazards?

il: addi x1, x1, 100
i2:1d x2, x1
i3: or x10, x2, x9

* Postponei2 andi3 by 1 cycle each.
* H#bubbles =2
* Answer=6+4-1+2=11

S
3.3
5 I e

Assuming in the original 5-stage design, each stage takes exactly the

of time to execute. Which of the following statements are true abo

stage pipeline design?

A.

B.

ivierge

Under this 4-stage design, the clock period can remain the same as that in the
5-stage design.

Under this 4-stage design, the clock period is twice as long as that in the 5-
stage design.

It takes longer time to execute the instruction sequence of Q1.1 under this 4-
stage design than the original 5-stage design.

It takes shorter time to execute the instruction sequence ¢
stage design than the original 5-stage design.

It takes the same amount of time to execute the instructiogsys
of Q1.1 under this 4-stage design than the original 5-stage™

111

