
CSO-Recitation 15
CSCI-UA 0201-007

R15: Assessment 13 & Mock Exam

Today’s Topics

• Mock Exam
• Assessment 13
• Review pipelined CPU

2

Mock Exam

3

1 Basic C and X86 64 machine
instructions (28 points)

4

1-A

Given a binary sequence (00000110)2, what is its decimal value?
1. 6

2. 5

3. 8

4. 10
5. None of the above

5

(00000110)2
= 1 * 2^2 + 1 * 2^1
= 6

1-B

Given a signed char −20, what is its binary representation?
1. (1001 0100)2
2. (1110 1011)2
3. (1110 1100)2
4. (0001 0100)2
5. None of the above

6

20 = (0001 0100)2

(0001 0100)2 flip=> (1110 1011)2

(1110 1011)2 + 1 = (1110 1100)2

1-C

Suppose %eax contains signed int 255. After successfully executing
movl %eax, (%ecx), what is the byte value stored at the address given
by %ecx?

1. 0xff

2. 0x00

3. 0xf0

4. 0x0f

5. None of the above

7

(0001 0100)2 flip=> (1110 1011)2%eax & movl: 4 bytes
255 => 0x00 00 00 ff

%ecx

1-C

Suppose %eax contains signed int 255. After successfully executing
movl %eax, (%ecx), what is the byte value stored at the address given
by %ecx?

1. 0xff

2. 0x00

3. 0xf0

4. 0x0f

5. None of the above

8

(0001 0100)2 flip=> (1110 1011)2%eax & movl: 4 bytes
255 => 0x00 00 00 ff

%ecx

Lower
address

Higher
address

ff 00 00 00

1-C

Suppose %eax contains signed int 255. After successfully executing
movl %eax, (%ecx), what is the byte value stored at the address given
by %ecx?

1. 0xff

2. 0x00

3. 0xf0

4. 0x0f

5. None of the above

9

(0001 0100)2 flip=> (1110 1011)2%eax & movl: 4 bytes
255 => 0x00 00 00 ff

%ecx

Lower
address

Higher
address

ff 00 00 00

Q: what is the answer if the machine is Big Endian?

1-D

Consider the following code snippet,

After executing the above, what is the value of p[1][1]?

10

(0001 0100)2 flip=> (1110 1011)2

ff 00 00 00

name: an array of char pointers

Q1: what is the size of name[0]?

1-D

Consider the following code snippet,

After executing the above, what is the value of p[1][1]?

11

(0001 0100)2 flip=> (1110 1011)2

00 00

name: an array of char pointers

names

The name of an array ó a pointer

0 8 16 24

Each element: a pointer to
(address of) a string

addr 1 addr 2 addr 3 addr 4

addr 1

‘C’ \0

1-D

Consider the following code snippet,

After executing the above, what is the value of p[1][1]?

12

(0001 0100)2 flip=> (1110 1011)2

00 00
p, names

0 8 16 24

addr 1 addr 2 addr 3 addr 4

addr 1

‘C’ \0

1-D

Consider the following code snippet,

After executing the above, what is the value of p[1][1]?

13

(0001 0100)2 flip=> (1110 1011)2

00 00
p, names

0 8 16 24

addr 1 addr 2 addr 3 addr 4

addr 1

‘C’ \0

Pointer
arithmetic.

1-D

Consider the following code snippet,

After executing the above, what is the value of p[1][1]?

14

(0001 0100)2 flip=> (1110 1011)2

ff 00 00 00

Pointer
arithmetic.

p: a pointer to char *
Pointer arithmetic: value of (p+2) = value of p + 2 * sizeof(char *)
char * type: pointer to a char => 8 bytes
value of (p+2) = value of p + 16

1-D

Consider the following code snippet,

After executing the above, what is the value of p[1][1]?

15

(0001 0100)2 flip=> (1110 1011)2

00 00

names

0 8 16 24

addr 1 addr 2 addr 3 addr 4

addr 1

‘C’ \0

p The name of an array ó a pointer
p[1] = *(p + 1)

p + 1
p[1] = *(p+1) = addr4

1-D

Consider the following code snippet,

After executing the above, what is the value of p[1][1]?

16

(0001 0100)2 flip=> (1110 1011)2

00 00
names

0 8 16 24

addr 1 addr 2 addr 3 addr 4

addr 4

‘h’ ‘a’ ‘r’ ‘d’ \0

p

p + 1
p[1] = *(p+1) = addr4

addr 1

‘C’ \0

p[1][1] =
addr4[1]

=*(addr4+1)

addr 4 + 1

1-D

Consider the following code snippet,

After executing the above, what is the value of p[1][1]?

17

(0001 0100)2 flip=> (1110 1011)2

00 00
‘a’

1-E

Consider the following code snippet,

After executing the above, what is the value of *b?

18

(0001 0100)2 flip=> (1110 1011)2

Size of int: 4 bytes
Size of short: 2 bytes

1-E

Consider the following code snippet,

After executing the above, what is the value of *b?

19

(0001 0100)2 flip=> (1110 1011)2

a

0 4 8

a[0] = 1

01 00 00 00

Little endian

02 00 00 00 03 00 00 00

1-E

Consider the following code snippet,

After executing the above, what is the value of *b?

20

(0001 0100)2 flip=> (1110 1011)2

b, a

0 4 8
01 00 00 00 02 00 00 00 03 00 00 00

1-E

Consider the following code snippet,

After executing the above, what is the value of *b?

21

(0001 0100)2 flip=> (1110 1011)2

ff 00 00

b: a pointer to short
Pointer arithmetic: value of (b+1) = value of b + 1 * sizeof(short)
short type: 2 bytes
value of (b+1) = value of b + 2

Pointer
arithmetic.

1-E

Consider the following code snippet,

After executing the above, what is the value of *b?

22

(0001 0100)2 flip=> (1110 1011)2

a

0 4 8

01 00 00 00 02 00 00 00 03 00 00 00

Pointer
arithmetic.

b

2

*b will fetch 2 bytes
Since b is a pointer to short

sizeof(short) = 2 bytes

1-E

Consider the following code snippet,

After executing the above, what is the value of *b?

23

(0001 0100)2 flip=> (1110 1011)2

a

0 4 8
01 00 00 00 02 00 00 00 03 00 00 00

Pointer
arithmetic.

b

2

*b = 0x00 00

1-E

Consider the following code snippet,

After executing the above, what is the value of *b?

24

(0001 0100)2 flip=> (1110 1011)2

0

1-F

Which following expressions compute the remainder of x modulo 64 (x
is of type unsigned int)?

1. x % 64

2. x / 64

3. x >> 6

4. x & 0x0000003f

5. (x << 26) >> 26

6. None of the above

25

(0001 0100)2 flip=> (1110 1011)2

00

x = i * 64 + j, 0<= j < 64
x: 32bits, 64 = 2^6

26 bits 6 bits

i j

26 bits 111111

111111000000… 000000

Result: (111111)2

000000….. 111111

0x3F: 00111111

1-G

Which of the following statements are true w.r.t. malloc?
1. Every call to malloc results in the memory allocator making a syscall

(e.g. sbrk) to request memory from OS.
2. malloc returns failure if and only if the memory allocator does not

have any free chunks.
3. When using the implicit-list design, malloc tends to traverse more

chunks than when using the explicit-list design.
4. None of the above.

26

00

First try to search in the current
heap to see whether there is an

available free chunk.
If there is no free chunks, it will
make a syscall (sbrk) to ask for

more space in the heap.
Implicit-list: potentially traverse all
chunks (both free and allocated)

Explicit-list: only traverse free chunks.

2 Memory hierarchy
(25 points + bonus 10 points)

27

2-A

28

00

What is the latency to access L1 cache and main memory, respectively?
Do not forget to write down the time unit. (We consider the answer
correct if it’s within a factor of 10)

L1 cache: SRAM 0.5-2.5ns
Main memory: DRAM 50-70ns

2-B

29

00

The rest of the questions assume a cache whose total size is 1KB and
each cache line/block is 64-byte.

How many cacheline/blocks does the cache contain?
(total size)/(size of each line) = 1KB/64 bytes = 16

2-C

30

00

The rest of the questions assume a cache whose total size is 1KB and
each cache line/block is 64-byte.

Suppose the cache is a direct mapped cache. Given a 32-bit address
0xab345f78, which cacheline/block contains the cached data for this
address?

Tag index Byte offset

Used to index which byte within a specific cacheline.
2^(# of bits) = how many bytes in total in a cacheline

of bits = log2(64) = 6

1 cacheline per set
16 cachelines => 16 sets

2-C

31

00

The rest of the questions assume a cache whose total size is 1KB and
each cache line/block is 64-byte.

Suppose the cache is a direct mapped cache. Given a 32-bit address
0xab345f78, which cacheline/block contains the cached data for this
address?

Tag index Byte offset

of bits = log2(64) = 6

Used to index which set caches this data.
2^(# of bits) = how many sets in total

of bits = log2(16) = 4

1 cacheline per set
16 cachelines => 16 sets

2-C

32

00

The rest of the questions assume a cache whose total size is 1KB and
each cache line/block is 64-byte.

Suppose the cache is a direct mapped cache. Given a 32-bit address
0xab345f78, which cacheline/block contains the cached data for this
address?

Tag index Byte offset

of bits = log2(64) = 6

Used to distinguish different addresses which are
mapped to the same set.

of bits = total bits – index - byte offset

of bits = log2(16) = 4# of bits = 32 – 4 – 6 = 22

1 cacheline per set
16 cachelines => 16 sets

2-C

33

00

The rest of the questions assume a cache whose total size is 1KB and
each cache line/block is 64-byte.

Suppose the cache is a direct mapped cache. Given a 32-bit address
0xab345f78, which cacheline/block contains the cached data for this
address?

Tag index Byte offset

0xab345f78:

1110001101

of bits = log2(64) = 6# of bits = log2(16) = 4# of bits = 32 – 4 – 6 = 22

13

2-C

34

00

Tag (t) Byte offset

0xab345f78:

1110001101

Sets/Cachelines:

0

1

2

…

13

…

15

16 sets, index 0 - 15

can be represented by 4 bits (0000 – 1111)

=> The size of index part

Valid Tag Data (64 bytes)Y t

(111000)2 = 56

57th bytes in data

64 bytes of data, index 0 - 63

can be represented by 6 bits (000000 – 111111)

=> The size of byte offset part

Suppose we want to read the

byte value in this address.

2-D

35

00

How many cacheline-aligned memory addresses can
be mapped to the same cache location as 0xab345f78
(assuming 32-bit address space)?

Tag index Byte offset

of bits = log2(64) = 6# of bits = log2(16) = 4# of bits = 32 – 4 – 6 = 22

Tag index Byte offset

0xab345f78:

1101

Addresses which satisfies:

0000001101

Can be arbitrary
value.

2^22

2-D: exercise

36

00

How many cacheline-aligned memory addresses can
be mapped to the same cache location as 0xab345f78
(assuming 32-bit address space)?

Tag index Byte offset

of bits = log2(64) = 6# of bits = log2(16) = 4# of bits = 32 – 4 – 6 = 22

Tag index Byte offset

0xab345f78:

1101

Addresses which satisfies:

1101

Can be arbitrary
value.

Can be arbitrary
value.

2^28

2-E

37

00

If your answer in D. is bigger than 1, how can we determine which of
the memory addresses is actually stored at a given cache location?

Compare the tag.

Tag index Byte offset

2-F

38

00

Suppose the cache is a 2-way associative cache, i.e. the cache is
organized into sets each of which contains 2 cachelines. How many sets
does the cache contain?

of cachelines = 16 (Q2-A)
of sets = # of cachelines / # of cachelines per set = 16/2 = 8

2-G

39

00

For the 2-way assocative cache, given a 32-bit address 0xab345f78,
which set may contain the cached data for this address?

Tag index Byte offset

of bits =
log2(# of bytes per cacheline)
= log2(64) = 6

of bits =
log2(# of sets)
= log2(8) = 3

of bits =
total number of bits
- index – byte offset
= 32 – 3 – 6 = 23

0xab345f78:

111000101

5

2-H

40

00

For the 2-way associactive cache, how many cacheline-aligned memory
addresses can be mapped to the same set as 0xab345f78

Tag index Byte offset

of bits = log2(64) = 6# of bits = log2(8) = 3# of bits = 32 – 3 – 6 = 23

Tag index Byte offset

0xab345f78:

101

Addresses which satisfies:

000000101

Can be arbitrary
value.

2^23

2-I (bonus)

41

00

Suppose ROWS=16, COLS=16. Out of ROWS*COLS total 8-byte memory
accesses, how many of them result in cache miss (assuming the cache
is direct-mapped and it’s empty before the start of the loop)?
Note: Here we suppose the start address of this array is cacheline-aligned.

…

…16
rows

16
columns

8 bytes

Memory address

2-I (bonus)

42

00

Suppose ROWS=16, COLS=16. Out of ROWS*COLS total 8-byte memory
accesses, how many of them result in cache miss (assuming the cache
is direct-mapped and it’s empty before the start of the loop)?
Note: Here we suppose the start address of this array is cacheline-aligned.

…

…16
rows

16
columns

Access sequence

Access
this

Cache miss!
Add into cache.

2-I (bonus)

43

00

Suppose ROWS=16, COLS=16. Out of ROWS*COLS total 8-byte memory
accesses, how many of them result in cache miss (assuming the cache
is direct-mapped and it’s empty before the start of the loop)?
Note: Here we suppose the start address of this array is cacheline-aligned.

…

…16
rows

16
columns

Access sequence

Cache hit!

2-I (bonus)

44

00

Suppose ROWS=16, COLS=16. Out of ROWS*COLS total 8-byte memory
accesses, how many of them result in cache miss (assuming the cache
is direct-mapped and it’s empty before the start of the loop)?
Note: Here we suppose the start address of this array is cacheline-aligned.

…

…16
rows

16
columns

Access sequence

• First access: cache miss.
• Add 64 bytes into cacheline.
• Therefore the following 7 accesses are cache hit.

64 bytes = 8 *
sizeof(long)

2-I (bonus)

45

00

Suppose ROWS=16, COLS=16. Out of ROWS*COLS total 8-byte memory
accesses, how many of them result in cache miss (assuming the cache
is direct-mapped and it’s empty before the start of the loop)?
Note: Here we suppose the start address of this array is cacheline-aligned.

…

…16
rows

16
columns

Access sequence

• Same to the following accesses.
• Cache miss rate = 1/8
• Cache miss times = 16 * 16 * 1/8 = 32

2-J (bonus)

46

00

Suppose ROWS=16, COLS=16. Out of ROWS*COLS total 8-byte memory
accesses, how many of them result in cache miss (assuming the cache
is direct-mapped and it’s empty before the start of the loop)?
Note: Here we suppose the start address of this array is cacheline-aligned.

…

…16
rows

16
columns

Access sequence

Start 1st

column

Cache miss!
Add into cache.

2-J (bonus)

47

00

Suppose ROWS=16, COLS=16. Out of ROWS*COLS total 8-byte memory
accesses, how many of them result in cache miss (assuming the cache
is direct-mapped and it’s empty before the start of the loop)?
Note: Here we suppose the start address of this array is cacheline-aligned.

…

…16
rows

16
columns

Access sequence

Cache miss!
Add into cache.

2-J (bonus)

48

00

Suppose ROWS=16, COLS=16. Out of ROWS*COLS total 8-byte memory
accesses, how many of them result in cache miss (assuming the cache
is direct-mapped and it’s empty before the start of the loop)?
Note: Here we suppose the start address of this array is cacheline-aligned.

…

…16
rows

16
columns

Access sequence

Cache miss!
Add into cache.

2-J (bonus)

49

00

Suppose ROWS=16, COLS=16. Out of ROWS*COLS total 8-byte memory
accesses, how many of them result in cache miss (assuming the cache
is direct-mapped and it’s empty before the start of the loop)?
Note: Here we suppose the start address of this array is cacheline-aligned.

…

…16
rows

16
columns

Access sequence

Cache hit!
• Is this correct?
• No!

53

• Direct mapped: one cacheline per set
• # number of sets/cachelines in the cache: 16 (Q2-B)
• Index: 0000 – 1111 (0 – 15)

• Each row = 16 * sizeof(long) = 2 cacheline size

16 rows

cacheline size

Which set should it be
mapped to?

54

• Direct mapped: one cacheline per set
• # number of sets/cachelines in the cache: 16 (Q2-B)
• Index: 0000 – 1111 (0 – 15)

• Each row = 16 * sizeof(long) = 2 cacheline size

16 rows

cacheline size

Suppose the start
address is 0.

Tag (22 bits) Index (4 bits) Byte offset (6 bits)

Address: 0

0000

Set: 0

55

• Direct mapped: one cacheline per set
• # number of sets/cachelines in the cache: 16 (Q2-B)
• Index: 0000 – 1111 (0 – 15)

• Each row = 16 * sizeof(long) = 2 cacheline size

16 rows

cacheline size

The start address is
0 + 64 (cacheline size).

Tag (22 bits) Index (4 bits) Byte offset (6 bits)

Address: 64 = 1 * 2^6

0001

Set: 0 Set: 1

56

• Direct mapped: one cacheline per set
• # number of sets/cachelines in the cache: 16 (Q2-B)
• Index: 0000 – 1111 (0 – 15)

• Each row = 16 * sizeof(long) = 2 cacheline size

16 rows

cacheline size

The start address is
0 + 2 *64 (cacheline size).

Tag (22 bits) Index (4 bits) Byte offset (6 bits)

Address: 64 = 2 * 2^6

0010

Set: 0 Set: 1

Set: 2

57

• Direct mapped: one cacheline per set
• # number of sets/cachelines in the cache: 16 (Q2-B)
• Index: 0000 – 1111 (0 – 15)

• Each row = 16 * sizeof(long) = 2 cacheline size

16 rows

cacheline size

Tag (22 bits) Index (4 bits) Byte offset (6 bits)

Set: 0 Set: 1

Set: 2 Set: 3
Set: 4 Set: 5

Set: 6 Set: 7

Set: 8 Set: 9
Set: 10 Set: 11
Set: 12 Set: 13

Set: 14 Set: 15

The last set in cache.

58

• Direct mapped: one cacheline per set
• # number of sets/cachelines in the cache: 16 (Q2-B)
• Index: 0000 – 1111 (0 – 15)

• Each row = 16 * sizeof(long) = 2 cacheline size

16 rows

cacheline size

Tag (22 bits) Index (4 bits) Byte offset (6 bits)

Set: 0 Set: 1

Set: 2 Set: 3
Set: 4 Set: 5

Set: 6 Set: 7

Set: 8 Set: 9
Set: 10 Set: 11
Set: 12 Set: 13

Set: 14 Set: 15

The start address is
0 + 16 *64 (cacheline size).

Address: 64 = 16 * 2^6

0000

Set: 0

Rounded to set 0.

59

• Direct mapped: one cacheline per set
• # number of sets/cachelines in the cache: 16 (Q2-B)
• Index: 0000 – 1111 (0 – 15)

• Each row = 16 * sizeof(long) = 2 cacheline size

16 rows

cacheline size

Tag (22 bits) Index (4 bits) Byte offset (6 bits)

Set: 0 Set: 1

Set: 2 Set: 3
Set: 4 Set: 5

Set: 6 Set: 7

Set: 8 Set: 9
Set: 10 Set: 11
Set: 12 Set: 13

Set: 14 Set: 15

Set: 0 Set: 1

Set: 2 Set: 3
Set: 4 Set: 5

Set: 6 Set: 7

Set: 8 Set: 9

Set: 10 Set: 11
Set: 12 Set: 13

Set: 14 Set: 15

60

• Direct mapped: one cacheline per set
• # number of sets/cachelines in the cache: 16 (Q2-B)
• Index: 0000 – 1111 (0 – 15)

• Each row = 16 * sizeof(long) = 2 cacheline size

16 rows

cacheline size

Set: 0 Set: 1
Set: 2 Set: 3
Set: 4 Set: 5
Set: 6 Set: 7
Set: 8 Set: 9

Set: 10 Set: 11
Set: 12 Set: 13
Set: 14 Set: 15
Set: 0 Set: 1
Set: 2 Set: 3
Set: 4 Set: 5
Set: 6 Set: 7
Set: 8 Set: 9

Set: 10 Set: 11
Set: 12 Set: 13
Set: 14 Set: 15

61

• Direct mapped: one cacheline per set
• # number of sets/cachelines in the cache: 16 (Q2-B)
• Index: 0000 – 1111 (0 – 15)

• Each row = 16 * sizeof(long) = 2 cacheline size

16 rows

cacheline size

Set: 0 Set: 1

Set: 2 Set: 3

Set: 4 Set: 5

Set: 6 Set: 7

Set: 8 Set: 9

Set: 10 Set: 11

Set: 12 Set: 13

Set: 14 Set: 15

Set: 0 Set: 1

Set: 2 Set: 3

Set: 4 Set: 5

Set: 6 Set: 7

Set: 8 Set: 9

Set: 10 Set: 11

Set: 12 Set: 13

Set: 14 Set: 15

Start 1st

column

Cache miss!

Add into cache set 0.

62

• Direct mapped: one cacheline per set
• # number of sets/cachelines in the cache: 16 (Q2-B)
• Index: 0000 – 1111 (0 – 15)

• Each row = 16 * sizeof(long) = 2 cacheline size

16 rows

cacheline size

Set: 0 Set: 1
Set: 2 Set: 3
Set: 4 Set: 5
Set: 6 Set: 7
Set: 8 Set: 9

Set: 10 Set: 11
Set: 12 Set: 13
Set: 14 Set: 15
Set: 0 Set: 1
Set: 2 Set: 3
Set: 4 Set: 5
Set: 6 Set: 7
Set: 8 Set: 9

Set: 10 Set: 11
Set: 12 Set: 13
Set: 14 Set: 15

Cache miss!
Add into cache set 2.

63

• Direct mapped: one cacheline per set
• # number of sets/cachelines in the cache: 16 (Q2-B)
• Index: 0000 – 1111 (0 – 15)

• Each row = 16 * sizeof(long) = 2 cacheline size

16 rows

cacheline size

Set: 0 Set: 1
Set: 2 Set: 3
Set: 4 Set: 5
Set: 6 Set: 7
Set: 8 Set: 9

Set: 10 Set: 11
Set: 12 Set: 13
Set: 14 Set: 15
Set: 0 Set: 1
Set: 2 Set: 3
Set: 4 Set: 5
Set: 6 Set: 7
Set: 8 Set: 9

Set: 10 Set: 11
Set: 12 Set: 13
Set: 14 Set: 15

Cache miss!
Add into cache set 14.

64

• Direct mapped: one cacheline per set
• # number of sets/cachelines in the cache: 16 (Q2-B)
• Index: 0000 – 1111 (0 – 15)

• Each row = 16 * sizeof(long) = 2 cacheline size

16 rows

cacheline size

Set: 0 Set: 1

Set: 2 Set: 3
Set: 4 Set: 5

Set: 6 Set: 7

Set: 8 Set: 9

Set: 10 Set: 11
Set: 12 Set: 13

Set: 14 Set: 15

Set: 0 Set: 1

Set: 2 Set: 3
Set: 4 Set: 5

Set: 6 Set: 7

Set: 8 Set: 9

Set: 10 Set: 11
Set: 12 Set: 13

Set: 14 Set: 15

Cache miss!
Add into cache set 0.

Mapped to the same set!
And only one cacheline per set!
=> replacement

65

• Direct mapped: one cacheline per set
• # number of sets/cachelines in the cache: 16 (Q2-B)
• Index: 0000 – 1111 (0 – 15)

• Each row = 16 * sizeof(long) = 2 cacheline size

16 rows

cacheline size

Set: 0 Set: 1

Set: 2 Set: 3
Set: 4 Set: 5

Set: 6 Set: 7

Set: 8 Set: 9

Set: 10 Set: 11
Set: 12 Set: 13

Set: 14 Set: 15

Set: 0 Set: 1

Set: 2 Set: 3
Set: 4 Set: 5

Set: 6 Set: 7

Set: 8 Set: 9

Set: 10 Set: 11
Set: 12 Set: 13

Set: 14 Set: 15

Cache miss!
Add into cache set 2.

Mapped to the same set!
And only one cacheline per set!
=> replacement

66

• Direct mapped: one cacheline per set
• # number of sets/cachelines in the cache: 16 (Q2-B)
• Index: 0000 – 1111 (0 – 15)

• Each row = 16 * sizeof(long) = 2 cacheline size

16 rows

cacheline size

Set: 0 Set: 1
Set: 2 Set: 3
Set: 4 Set: 5
Set: 6 Set: 7
Set: 8 Set: 9

Set: 10 Set: 11
Set: 12 Set: 13
Set: 14 Set: 15
Set: 0 Set: 1
Set: 2 Set: 3
Set: 4 Set: 5
Set: 6 Set: 7
Set: 8 Set: 9

Set: 10 Set: 11
Set: 12 Set: 13
Set: 14 Set: 15

All of them are
evicted from cache.

67

• Direct mapped: one cacheline per set
• # number of sets/cachelines in the cache: 16 (Q2-B)
• Index: 0000 – 1111 (0 – 15)

• Each row = 16 * sizeof(long) = 2 cacheline size

16 rows

cacheline size

Set: 0 Set: 1

Set: 2 Set: 3

Set: 4 Set: 5

Set: 6 Set: 7

Set: 8 Set: 9

Set: 10 Set: 11

Set: 12 Set: 13

Set: 14 Set: 15

Set: 0 Set: 1

Set: 2 Set: 3

Set: 4 Set: 5

Set: 6 Set: 7

Set: 8 Set: 9

Set: 10 Set: 11

Set: 12 Set: 13

Set: 14 Set: 15

Start the 2nd

column

Cache miss!

Add into cache set 0.

Set conflict => replacement

68

• Direct mapped: one cacheline per set
• # number of sets/cachelines in the cache: 16 (Q2-B)
• Index: 0000 – 1111 (0 – 15)

• Each row = 16 * sizeof(long) = 2 cacheline size

16 rows

cacheline size

Set: 0 Set: 1

Set: 2 Set: 3

Set: 4 Set: 5

Set: 6 Set: 7

Set: 8 Set: 9

Set: 10 Set: 11

Set: 12 Set: 13

Set: 14 Set: 15

Set: 0 Set: 1

Set: 2 Set: 3

Set: 4 Set: 5

Set: 6 Set: 7

Set: 8 Set: 9

Set: 10 Set: 11

Set: 12 Set: 13

Set: 14 Set: 15

Same for all the following accesses.

• Next time you try to access the same slot,

• It has already been evicted from the cache

• Cache miss!

Cache miss rate: 100%

Cache miss times: 16*16 = 256

2-J (bonus) exercise1

69

00

Suppose ROWS=8, COLS=32. Out of ROWS*COLS total 8-byte memory
accesses, how many of them result in cache miss (assuming the cache
is direct-mapped and it’s empty before the start of the loop)?
Note: Here we suppose the start address of this array is cacheline-aligned.

…

…16
rows

16
columns

Access sequence

8

32

2-J (bonus) exercise2

70

00

Suppose ROWS=8, COLS=16. Out of ROWS*COLS total 8-byte memory
accesses, how many of them result in cache miss (assuming the cache
is direct-mapped and it’s empty before the start of the loop)?
Note: Here we suppose the start address of this array is cacheline-aligned.

…

…16
rows

16
columns

Access sequence

8

3 Logic design (25 points)

72

3-A

What is the boolean expression that corresponds to what the following
logic circuit outputs? (Please write the expression with the most direct
correspondence to this circuit without simplification.)
• (bar(A+B))·C

73

3-B

Please simplify the boolean expression (A+B)·(A+B) according to the
boolean logic laws in Appendix 6. Write down the detailed steps where
each step applies only one law and name that law
• Covered in Q2 of recitation 13

74

Q2 Simplify boolean expression

• Simplify boolean expression (A+B) ⋅(#̅ + $%).
• You may write `*` for ⋅, and write `barA` for #̅ (or `barB` or $%)
• (A+B)*(barA+barB)
• =(A+B)*barA + (A+B)*barB
• =barA*A + barA*B + barB*A + barB*B
• =0+barA*B+barB*A+0
• =barA*B+barB*A

Distribution law

Distribution law

Inverse law

Basic law

3-C

• If we are to use a single logic gate to implement the simplified
expression in B. Which gate to use?

1. AND
2. OR
3. NOR
4. NAND
5. XOR
6. None of the above

76

3-Question C. and D.

• Question C. and D. ask you to implement a combinatorial circuit to
compute a 3-input parity function. A parity function takes multiple 1-
bit input signals and computes a 1-bit parity bit as the output. The
parity bit is the sum of all input signals modulo 2. For example, if the
3 input signals are 110, the parity output is (1+1+0)%2 = 0. If the 3
input signals are 111, the parity output is (1+1+1)%2 = 1.

77

3-C

• Please write the truth table for the 3-input parity function.

78

A B C Output
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

3-D

• Please draw the combinatorial circuit that implements the above
parity function.

79

A B C Output
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

barA*barB*C
barA*B*barC

A*barB*barC

A*B*C

Products

Follow the rule of “sum of products”

3-D

• Please draw the combinatorial circuit that implements the above
parity function.

80

barA*barB*C

barA*B*barC

A*barB*barC

A*B*C

4. CPU design

• Figure 1 shows a basic single-cycle CPU design for RISC-V. The design
handles 3 types of instructions: arithmetic instructions involving two
source registers and one destination register, memory load
instructions and store instructions. Note that the design does not
implement conditional branches. Suppose the major logic blocks in
Figure 1 have the following latencies (If a logic block’s latency is not
specified, it is small enough to be ignored.)

81

4. CPU design

82

4-A

• What is the minimum latency to execute each of the following
instructions in the single-cycle design:

83

4-A

84

2

3
1

x2

x3
x1

x1

400 150 250
150

400+150+250+150=950

4-A

85

2

1 x2
x2+16400 150 250

400+150+250+400=1200

16
16 400

x1

4-A

86

2

1

x2
x2+16

Mem[x2+16]

400 150 250
150

400+150+250+400+150=1350

16
16 400

Mem[x2+16]

4-B

What is fastest clock cycle time that can be used for the single-cycle
CPU design?
• The time sufficient for all instructions to finish
• = time of slowest instruction
• 1350

87

4-C

Suppose we change the CPU in Figure 1 into 5-stage pipelined design:
IF(instruction fetch), ID(instruction decode and register read),
EX(execute operation or calculate address), MEM(memory access),
WB(write back to regfile). The five stages of the pipeline are marked as
the large grey rectangles in Figure 1. What is the fastest clock cycle
time that can be used for the 5-stage design?
• 400ps

88

pipeline clock cycle=max_stage_time

MEMi1: ld x1, 16(x2)

bubble

bubble

IF EXID WB

IF EXID MEM

IF EXID

i2: add x5, x1, x4 IF ID

4-E

Suppose there is no forwarding between pipeline stages, how many
bubbles (aka nop) must be inserted between the two instructions to
ensure correctness?
• 2

89

When i2 tries
to read x1

i1 has just
written x1 back
=> No hazard

4-F

Suppose the result of MEM stage is forwarded to the EX stage, how
many bubbles (aka nop) must be inserted between the two instructions
to ensure correctness?
• 1

90

MEMi1: ld x1, 16(x2)

bubble

i2: add x5, x1, x4

IF EXID WB

IF EXID MEM

IF EXID

x1

Assessment 13

91

Q1 5-stage pipeline

• This question assumes the 5-stage pipelined design of RISC-V (slide 21
of https://nyu-cso.github.io/notes/arch-cpu-pipeline.pdf), also
reproduced here:

92

https://nyu-cso.github.io/notes/arch-cpu-pipeline.pdf

Q1.1

• Consider the following sequence of RISC-V instructions.

• How many clock cycles are needed to execute the above instruction
sequence?

93

add x2, x1, x3 //x2=x1+x3
and x5, x1, x3 //x5 = x1 & x3
or x10, x11, x9 //x10 = x11 | x9
add x14, x1, x1 //x14 = x1+x1
add x15, x11, x12 //x15 = x11+x12

Q1.1

• For n instructions with no hazards, #cycles = n+#stages-1 = n+4

• More generally (considering hazards), #cycles = n+#stages-1+#bubbles

94

MEMi1

i2

i3

IF EXID WB

IF EXID MEM

IF EXID

WB

MEM WB

cycle 1 cycle 2 cycle 3 cycle 4 cycle 5 cycle 6 cycle 7

1 instruction
needs 5 cycles

2 need
6 cycles

3 need
7 cycles

Q1.1 has no hazards; it has 5(n) instructions, so answer is 5+4=9

Q1.2

• Consider a different sequence of instructions:
• How many clock cycles are needed to execute the above instruction

sequence? We assume the pipeline does not perform forwarding but
only relies on stalls (aka inserting bubbles) to handle hazard. We also
assume that one can read the data written to the register in the same
cycle.

95

add x2, x1, x3 //x2=x1+x3
and x5, x2, x3 //x5 = x2 & x3
or x10, x2, x9 //x10 = x2 | x9
add x14, x2, x2 //x14 = x2+x2
add x15, x2, x12 //x15 = x2+x12

Q1.2

• Answer= n+#stages-1+#bubbles

• Are there any hazards?

• How many bubbles introduced by the hazard?

add x2, x1, x3 //x2=x1+x3
and x5, x2, x3 //x5 = x2 & x3
or x10, x2, x9 //x10 = x2 | x9
add x14, x2, x2 //x14 = x2+x2
add x15, x2, x12 //x15 = x2+x12

MEMi1: add x2, x1, x3

i2: and x5, x2, x3

i3: or x10, x2, x9

IF EXID WB

IF EXID MEM

IF EXID

x2 is not
written back

until here

x2 needs to
be read here

x2 needs to
be read here

Q1.2

• Answer= n+#stages-1+#bubbles
• Are there any hazards?
• How many bubbles introduced by the hazard?

• 2

• No hazards afterwards
• answer=9+2=11

add x2, x1, x3 //x2=x1+x3
and x5, x2, x3 //x5 = x2 & x3
or x10, x2, x9 //x10 = x2 | x9
add x14, x2, x2 //x14 = x2+x2
add x15, x2, x12 //x15 = x2+x12

MEMi1

bubble

bubble

IF EXID WB

IF EXID MEM

IF EXID

i2 IF ID

i3 IF ID

Q1.3

• Consider yet another sequence of instructions:

• How many clock cycles are needed to execute the above instruction
sequence? Like before, we assume the pipeline does not perform
forwarding but only relies on stalls (aka inserting bubbles) to handle
hazard. We also assume that one can read the data written to the
register in the same cycle.

• same as previous question: need to postpone i2’s ID until i1’s WB’s
cycle

• 11

98

ld x2, 100(x1) //x2=Memory[100+x1]
and x5, x2, x3 //x5 = x2 & x3
or x10, x2, x9 //x10 = x2 | x9
add x14, x2, x2 //x14 = x2+x2
add x15, x2, x12 //x15 = x2+x12

Q1.4

• Suppose the CPU performs forwarding, as done on slide 34 of
https://nyu-cso.github.io/notes/arch-cpu-pipeline.pdf
• How many clock cycles are needed to execute the instruction

sequence in Q1.2?

99

add x2, x1, x3 //x2=x1+x3
and x5, x2, x3 //x5 = x2 & x3
or x10, x2, x9 //x10 = x2 | x9
add x14, x2, x2 //x14 = x2+x2
add x15, x2, x12 //x15 = x2+x12

https://nyu-cso.github.io/notes/arch-cpu-pipeline.pdf

MEMi1

i2

i3

IF EXID WB

IF EXID MEM

IF EXID

x2 x2

Q1.4

• Answer= n+#stages-1+#bubbles

100

add x2, x1, x3 //x2=x1+x3
and x5, x2, x3 //x5 = x2 & x3
or x10, x2, x9 //x10 = x2 | x9
add x14, x2, x2 //x14 = x2+x2
add x15, x2, x12 //x15 = x2+x12

No bubbles
Answer=n+4=9

Q1.5

• Suppose the CPU performs forwarding, how many clock cycles are
needed to execute the instruction sequence in Q1.3?
• Answer= n+#stages-1+#bubbles

101

ld x2, 100(x1) //x2=Memory[100+x1]
and x5, x2, x3 //x5 = x2 & x3
or x10, x2, x9 //x10 = x2 | x9
add x14, x2, x2 //x14 = x2+x2
add x15, x2, x12 //x15 = x2+x12

MEMi1: ld x2, 100(x1)

i2: and x5, x2, x3

i3: or x10, x2, x9

IF EXID WB

IF EXID MEM

IF EXID

x2 is not
ready until

here

Forwarding postpone x2’s
dependency to here, but

not still too late

Q1.5

• Suppose the CPU performs forwarding, how many clock cycles are
needed to execute the instruction sequence in Q1.3?
• Answer= n+#stages-1+#bubbles

102

ld x2, 100(x1) //x2=Memory[100+x1]
and x5, x2, x3 //x5 = x2 & x3
or x10, x2, x9 //x10 = x2 | x9
add x14, x2, x2 //x14 = x2+x2
add x15, x2, x12 //x15 = x2+x12

MEMi1: ld x2, 100(x1)

bubble

i2: and x5, x2, x3

IF EXID WB

IF EXID MEM

IF EXID

i3: or x10, x2, x9 IF EXID

x2

1 bubble
Answer=n+4+1=10

Q2 4-stage pipeline

• Ben Bitdiddle decides to make a 4-stage pipelined CPU by merging the
IF and ID stage of the 5-stage pipeline into a combined IFID stage, as
shown below.

103

Q2.1

• For the instruction sequence in Q1.1, how many clock cycles are
needed to execute them all? (We assume Ben sets the clock
frequency appropriately so that each stage can be completed in one
clock cycle)
• 8

104

add x2, x1, x3 //x2=x1+x3
and x5, x1, x3 //x5 = x1 & x3
or x10, x11, x9 //x10 = x11 | x9
add x14, x1, x1 //x14 = x1+x1
add x15, x11, x12 //x15 = x11+x12

• #cycles = n+#stages-1+#bubbles
• #bubbles=0
• #stages=4
• answer=8

Q2.2

Assuming in the original 5-stage design, each stage takes exactly the same amount
of time to execute. Which of the following statements are true for Ben's 4-stage
pipeline design?
A. Under the new 4-stage design, the clock period can remain the same as that in

the 5-stage design.
B. Under the new 4-stage design, the clock period is twice as long as that in the 5-

stage design.
C. It takes longer time to execute the instruction sequence of Q1.1 under the 4-

stage design than the original 5-stage design.
D. It takes shorter time to execute the instruction sequence of Q1.1 under the 4-

stage design than the original 5-stage design.
E. It takes the same amount of time to execute the instruction sequence of Q1.1

under the 4-stage design than the original 5-stage design.

105

IF ID EX MEM WB max
old x x x x x x

new 2x 2x

clock period=max_stage_time

cycles clock
period

time

old 9 x 9x

new 8 2x 16x

Q3 Another 4-stage design

• Ben Bitdiddle tries another a 4-stage pipelined design. This time, he
combines EX and MEM stage into a single stage EXMEM, as shown
below.
• To make this new design possible, Ben modifies the RISC-V instruction

set so that the load and store instructions no longer take an offset.
Rather, the member address must be calculated explicitly through an
arithmetic instruction and stored in some register before load and
store.

106

107

Q3.1

• In the instruction sequence of Q1.3, the first instruction is ld x2,
100(x1), which is not supported by Ben's new ISA. Please write an
equivalent RISC-V instruction sequence that's supported by Ben's ISA
while achieving the same desired effect.

• addi x1, x1, 100

• ld x2, x1

108

Q3.2

• How many clock cycles are needed to execute the instruction
sequence of Q1.3 under Ben's new 4-stage CPU design?
• We assume no forwarding.
• We assume the instruction ld x2, 100(x1) is substituted with your

answer in Q3.1.

109

addi x1, x1, 100
ld x2, x1
and x5, x2, x3 //x5 = x2 & x3
or x10, x2, x9 //x10 = x2 | x9
add x14, x2, x2 //x14 = x2+x2
add x15, x2, x12 //x15 = x2+x12

WBi1: addi x1, x1, 100

i2: ld x2, x1

i3: or x10, x2, x9

IF EXMEMID

IF EXMEMID

IF ID

WB

EXMEM

Q3.2

addi x1, x1, 100
ld x2, x1
and x5, x2, x3 //x5 = x2 & x3
or x10, x2, x9 //x10 = x2 | x9
add x14, x2, x2 //x14 = x2+x2
add x15, x2, x12 //x15 = x2+x12

• Answer= n+#stages-1+#bubbles

• Are there any hazards?

• Postpone i2 and i3 by 1 cycle each.

• #bubbles = 2

• Answer=6+4-1+2=11

x1 is not
written back

until here

x2 needs to
be read here

x1 needs to
be read here

x2 is not
written back

until here

Q3.3

Assuming in the original 5-stage design, each stage takes exactly the same amount
of time to execute. Which of the following statements are true about Ben's new 4-
stage pipeline design?
A. Under this 4-stage design, the clock period can remain the same as that in the

5-stage design.
B. Under this 4-stage design, the clock period is twice as long as that in the 5-

stage design.
C. It takes longer time to execute the instruction sequence of Q1.1 under this 4-

stage design than the original 5-stage design.
D. It takes shorter time to execute the instruction sequence of Q1.1 under this 4-

stage design than the original 5-stage design.
E. It takes the same amount of time to execute the instruction sequence

of Q1.1 under this 4-stage design than the original 5-stage design.

111

IF ID EX MEM WB max
old x x x x x x

new max(x,x)=x

Merge

IF ID
EX

MEM
WB

Since only one of EX or MEM
used for each instruction

cycles clock
period

time

old 9 x 9x

new 8 x 8x

